11、LLaMA-Factory自定义数据集微调

1、数据集定义

  针对实际的微调需求,使用专门针对业务垂直领域的私有数据进行大模型微调才是我们需要做的。因此,我们需要探讨如何在LLaMA-Factory项目及上述创建的微调流程中引入自定义数据集进行微调。**对于LLaMA-Factory项目,目前仅支持两种格式的数据集:alpacasharegpt

1.1 alpaca

alpaca 格式的数据集按照以下方式组织:

[
  {
   
    "instruction": "用户指令(必填)",
    "input":
### 使用自定义数据集llama-factory 中进行 LoRA 微调 为了使用自定义数据集在 `llama-factory` 进行训练或推理,需遵循特定流程来准备环境并执行命令。 #### 准备工作 确保已安装必要的依赖库,并设置好 Python 环境。对于本地使用的场景,按照官方文档完成初步配置[^2]。 #### 数据预处理 创建适合模型输入的数据文件。通常情况下,这涉及将原始文本转换成 JSONL 或 CSV 文件格式,每条记录代表一次对话交互或者单句输入。具体结构取决于所选基础模型的要求。 #### 配置参数 编辑 YAML 配置文件(如 `examples/train_lora/mytrain_lora_sft.yaml`),指定要加载的基础模型名称以及指向自定义数据集的位置。当仅提供模型名而不给出完整路径时,通过设定环境变量 `export USE_MODELSCOPE_HUB=1` 可使程序正常识别远程仓库中的资源[^3]。 ```yaml # mytrain_lora_sft.yaml 示例片段 model_name_or_path: "qwen/Qwen-7B" dataset_dir: "./path/to/your/custom_dataset/" output_dir: "./outputs/lora_finetuned_model/" per_device_train_batch_size: 8 num_train_epochs: 3 learning_rate: 5e-5 ``` #### 启动训练过程 利用 CLI 工具启动微调作业: ```bash lora 指令微调 llamafactory-cli train examples/train_lora/mytrain_lora_sft.yaml ``` 此命令会读取给定的配置文件,并基于其中定义的各项超参对选定的大规模语言模型实施低秩适应(LoRA)调整,从而优化其针对特定领域任务的表现效果[^1]。 #### 推理阶段 一旦训练结束,在新环境中部署经过改进后的模型之前,建议先测试几个样本案例以验证性能提升情况。可以采用如下方式快速评估: ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("./outputs/lora_finetuned_model/") model = AutoModelForCausalLM.from_pretrained("./outputs/lora_finetuned_model/") input_text = "编写一段关于..." inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Andy_shenzl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值