人工智能中的RAG指的是什么

目录

RAG的工作原理

RAG的优势

应用场景

例子

总结


在人工智能领域,RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合检索和生成技术的模型架构。它将外部知识库中的信息检索与大规模语言模型(如GPT)进行结合,从而生成更加准确、相关性更高的回答或文本。

RAG主要应用于需要访问大量外部知识的任务,特别是在回答问题、知识生成或文档分析中。与单纯依赖语言模型的生成方法不同,RAG通过引入检索机制,大幅提升了生成内容的准确性和信息性。

RAG的工作原理

RAG通常分为两个主要步骤:

  1. 信息检索(Retrieval)
    这一阶段,RAG会基于输入的提示(如问题或任务描述)去检索外部知识库。知识库可以是维基百科等文档库,也可以是自定义的企业数据库、领域专用文档库等。检索机制可以是基于稀疏向量(如TF-IDF)或基于密集向量(如BERT embedding)的检索。
  2. 生成阶段(Generation)
    检索到的信息会作为上下文提供给生成模型(如GPT)。然后,生成模型根据检索到的信息和原始输入生成最终的输出。这种生成方式使得模型能够基于外部信息更准确地生成文本,而不仅仅依赖其训练数据。

RAG的优势

  • 增强准确性:相比单纯的生成模型,RAG模型通过结合外部检索数据,能够生成更加准确和上下文相关的内容。这特别适用于需要基于最新信息或特定知识库的任务。
  • 降低幻觉现象(Hallucination):语言模型有时会生成虚构或不准确的信息,而RAG通过引入实际检索到的知识,可以有效减少这种现象。
  • 可更新性:与单一的预训练生成模型不同,RAG能够通过更新知识库动态适应新的信息,而不需要重新训练模型。

应用场景

  • 问答系统:在开放领域的问答任务中,RAG能够通过访问外部数据库来提高回答的正确性和覆盖面,尤其是在需要精确事实或最新信息时。
  • 文档生成:RAG可以根据外部参考文献生成报告、摘要、新闻等文档,同时保持文本内容与参考信息的一致性。
  • 信息抽取和知识管理:在需要从大量文档中提取关键信息的任务中,RAG能够结合检索和生成能力,帮助更高效地生成结果。

例子

假设用户询问一个关于最新科学发现的问题。由于预训练的模型在其训练数据中可能不包含最新信息,RAG系统可以首先在相关文档库中检索到最新的论文或新闻,然后根据检索到的内容生成准确的回答。

总结

RAG模型是一种将检索与生成紧密结合的架构,既保留了生成模型的灵活性,又引入了外部知识库的权威性和实时性,使得生成的文本更加精准和信息丰富。这种架构特别适合于动态信息密集型的任务。

### 大语言模型 RAG 的概念 大语言模型(LLM,Large Language Model)是一种专注于理解和生成人类语言的人工智能模型[^1]。而检索增强生成(RAG, Retrieval-Augmented Generation)则是通过整合从外部知识库中检索到的信息来导 LLM 生成更精确的回答的技术方法[^2]。 具体而言,RAG 是一种结合了检索与生成技术的混合型 AI 模型。它通过引入外部知识库检索机制,增强了大型语言模型在解决复杂问题、处理实时信息以及满足特定领域知识需求方面的能力。这种能力使得 RAG 在开放式问答、专业领域问答和对话系统等领域表现出显著的优势。 值得注意的是,虽然 RAG 和其他大型语言模型如 GPT-3 都致力于提高自然语言处理的效果,但它们的核心差异在于 RAG 更加依赖于动态检索的真实世界数据,这使其能够更好地应对快速变化的知识环境[^3]。 ```python # 示例代码展示如何简单模拟 RAG 过程中的检索部分 def retrieve_relevant_documents(query, knowledge_base): """ 根据查询从知识库中检索相关文档 :param query: 用户输入的查询字符串 :param knowledge_base: 存储大量文本数据的知识库列表 :return: 返回最相关的几个文档片段 """ relevant_docs = [] for doc in knowledge_base: if query.lower() in doc.lower(): relevant_docs.append(doc) return relevant_docs[:3] knowledge_base = [ "Python is a high-level programming language.", "Java is widely used in enterprise applications.", "JavaScript powers dynamic web content." ] query = "programming" retrieved_docs = retrieve_relevant_documents(query, knowledge_base) print(f"Retrieved Documents: {retrieved_docs}") ``` 上述代码展示了如何基于简单的关键词匹配实现一个基础版本的文档检索功能,这是构建 RAG 系统的一部分逻辑简化版。 ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张3蜂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值