目录
1. RAGFlow 的基本概念
RAGFlow 是一种用于实现检索增强生成(Retrieval-Augmented Generation, RAG)架构的框架。它结合了信息检索和文本生成的优势,使生成模型能够根据外部信息源生成更准确和相关的文本。这种方法特别适用于问答系统、对话系统以及需要实时生成信息的应用场景。
2. RAGFlow 的架构
RAGFlow 的架构通常由两个主要组件组成:
- 检索模块:该模块负责从外部知识库或文档中检索相关信息。通常使用向量数据库、信息检索引擎等技术来实现。
- 生成模块:在获得检索结果后,生成模块(如 Transformer-based 模型)使用这些信息生成最终的响应。生成过程依赖于输入的上下文和检索到的信息,以提升生成内容的质量。
3. 使用案例
RAGFlow 在多个应用场景中表现出色,具体包括:
- 问答系统:用户提出问题,系统检索相关文档,并生成准确的回答。
- 对话系统:在多轮对话中,系统可以动态获取上下文信息,提供更智能的交互。
- 内容生成:根据特定主题或需求,从多个文档中提取