LightGCN

LightGCN是一种轻量级的推荐系统模型,它摒弃了GCN中的特征变换和非线性激活,通过简单的线性传播学习用户和物品的嵌入。实验证明,这两项操作在协同过滤中并不有效,而LightGCN在与最佳GCN基线NGCF的对比中表现出显著提升(平均提升16.0%的召回率)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.简介

本文提出了一种轻型但是有效的GCN网络用于推荐系统,它舍弃了传统GCN的特征变换和非线性激活,并通过实验验证了这两种操作对协同过滤是无效的,同时提出了一种轻量级的GCN网络构建模型(LightGCN)用于推荐系统。

LightGCN它只包含GCN中最基本的结构(邻居聚合)用于协同过滤。LightGCN通过在用户-物品交互矩阵上进行线性传播来学习用户和物品的嵌入,最后将所有层学习到的嵌入的加权和作为最终嵌入。这种简单、线性的模型是很容易实施和训练的,并且在同样的实验条件下相对于NGCF(一种最好的基于GCN的推荐模型)有了实质性的改善(相对平均提升了16.0%)

总之,主要的贡献如下:

1.实验结果表明,GCN中两种常见的设计,即特征转换和非线性激活,对协同过滤的效果没有积极影响

2.我们提出了LightGCN,它只包含GCN中最基本的组件以供推荐,从而大大简化了模型设计。

3.我们通过遵循相同的设置对LightGCN和NGCF进行了经验比较,并证明了改进。在从技术和经验两个角度对LightGCN的合理性进行了深入分析。

2.准备工作

我们首先介绍了NGCF,并证明了NGCF中两种操作(特征变换和非线性激活)对协同过滤来说没有用。

2.1NGCF概述:

       在半监督的节点分类中,每个节点都含有丰富的语义特征进行输入,多层的特征变换和非线性变换对于特征学习来说是有益的。但是在协同过滤任务中,每个在交互矩阵中的节点只有一个ID输入,且这个ID是没有如何语义的(不包含特征信息),所以特征变换和非线性激活不会使网络学习到更多特征,更糟糕的是,它还会增加训练难度。

2.2NGCF的实证研究

 对NGCF做了简化

1.NGCF-f,移除了特征变换矩阵W1和W2

2.NGCF-n,移除了非线性激活函数\sigma

3.NGCF-nf,同时移除了非线性激活函数和特征变换矩阵

 测试得到如下效果: 

我们可以得到以下结论:

1.添加特征变换对NGCF产生了负面影响,因为对NGCF和NGCF-n两种模型中消除了特征变换后,都显著提高了NGCF的性能;

2.当特征变化在时加入非线性激活对模型的影响较小,但当特征变换被禁用时,加入非线性激活会产生负面影响。

3.总体而言,特征变换和非线性激活对NGCF产生了相当负面的影响,因为同时去除它们,NGCF-fn比NGCF有很大的提高(召回率相对提高9.57%ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值