1.简介
本文提出了一种轻型但是有效的GCN网络用于推荐系统,它舍弃了传统GCN的特征变换和非线性激活,并通过实验验证了这两种操作对协同过滤是无效的,同时提出了一种轻量级的GCN网络构建模型(LightGCN)用于推荐系统。
LightGCN它只包含GCN中最基本的结构(邻居聚合)用于协同过滤。LightGCN通过在用户-物品交互矩阵上进行线性传播来学习用户和物品的嵌入,最后将所有层学习到的嵌入的加权和作为最终嵌入。这种简单、线性的模型是很容易实施和训练的,并且在同样的实验条件下相对于NGCF(一种最好的基于GCN的推荐模型)有了实质性的改善(相对平均提升了16.0%)
总之,主要的贡献如下:
1.实验结果表明,GCN中两种常见的设计,即特征转换和非线性激活,对协同过滤的效果没有积极影响
2.我们提出了LightGCN,它只包含GCN中最基本的组件以供推荐,从而大大简化了模型设计。
3.我们通过遵循相同的设置对LightGCN和NGCF进行了经验比较,并证明了改进。在从技术和经验两个角度对LightGCN的合理性进行了深入分析。
2.准备工作
我们首先介绍了NGCF,并证明了NGCF中两种操作(特征变换和非线性激活)对协同过滤来说没有用。
2.1NGCF概述:
在半监督的节点分类中,每个节点都含有丰富的语义特征进行输入,多层的特征变换和非线性变换对于特征学习来说是有益的。但是在协同过滤任务中,每个在交互矩阵中的节点只有一个ID输入,且这个ID是没有如何语义的(不包含特征信息),所以特征变换和非线性激活不会使网络学习到更多特征,更糟糕的是,它还会增加训练难度。
2.2NGCF的实证研究
对NGCF做了简化
1.NGCF-f,移除了特征变换矩阵W1和W2
2.NGCF-n,移除了非线性激活函数
3.NGCF-nf,同时移除了非线性激活函数和特征变换矩阵
测试得到如下效果:
我们可以得到以下结论:
1.添加特征变换对NGCF产生了负面影响,因为对NGCF和NGCF-n两种模型中消除了特征变换后,都显著提高了NGCF的性能;
2.当特征变化在时加入非线性激活对模型的影响较小,但当特征变换被禁用时,加入非线性激活会产生负面影响。
3.总体而言,特征变换和非线性激活对NGCF产生了相当负面的影响,因为同时去除它们,NGCF-fn比NGCF有很大的提高(召回率相对提高9.57%ÿ