- 博客(29)
- 收藏
- 关注
原创 应对过度处方挑战:为药物推荐任务微调大语言模型(Xiangnan He)
药物推荐系统因其有潜力根据患者的临床数据提供个性化且有效的药物组合,在医疗保健领域备受关注。然而,现有方法在适应不同的电子健康记录(EHR)系统以及有效利用非结构化数据方面面临挑战,导致其泛化能力有限,性能欠佳。
2025-04-30 20:02:10
1288
原创 MedRAG: Enhancing Retrieval-augmented Generation with Knowledge Graph-Elicited Reasoning for Healthc
Retrieval-augmented generation (RAG) is a well-suited technique for retrieving privacy-sensitive Electronic Health Records (EHR).
2025-03-28 10:40:03
784
原创 Debiased, Longitudinal and Coordinated Drug Recommendation through Multi-Visit Clinic Records
AI-empowered drug recommendation has become an important task in healthcare research areas, which offers an additional perspective to assist human doctors with more accurate and more efficient drug prescriptions.
2025-02-14 17:51:44
845
原创 Large Language Model Distilling Medication Recommendation Model
Abstract—The recommendation of medication is a vital aspect of intelligent healthcare systems, as it involves prescribing the most suitable drugs based on a patient’s specific health needs. Unfortunately, many sophisticated models currently in use tend to
2025-02-14 15:41:10
1690
原创 SMR: Medical Knowledge Graph Embedding for Safe Medicine Recommendation
Most of the existing medicine recommendation systems that are mainly based on electronic medical records (EMRs) are significantly assisting doctors to make better clinical decisions benefiting both patients and caregivers.
2025-01-15 18:33:36
270
原创 PREMIER-Personalizing Medication Recommendation with a Graph-Based Approach
The broad adoption of electronic health records (EHRs) has led to vast amounts of data being accumulated on a patient’s history, diagnosis, prescriptions, and lab tests.
2025-01-15 18:30:15
141
原创 CompNet-Order-free Medicine Combination Prediction with Graph Convolutional Reinforcement Learning
Medicine Combination Prediction (MCP) based on Electronic Health Record (EHR) can assist doctors to prescribe medicines for complex patients.
2025-01-15 18:23:16
139
原创 Dual Memory Neural Computer for Asynchronous Two-view Sequential Learning
One of the core tasks in multi-view learning is to capture relations among views.
2025-01-14 15:51:55
148
原创 Bias and Debias in Recommender System: A Survey and Future Directions
While recent years have witnessed a rapid growth of research papers on recommender system (RS), most of the papers focus on inventing machine learning models to better fit user behavior data. However, user behavior data is observational rather than experim
2025-01-14 15:48:29
118
原创 REFINE: A Fine-Grained Medication Recommendation System Using Deep Learning and Personalized Drug In
Patients with co-morbidities often require multiple medications to manage their conditions.
2025-01-14 15:45:43
382
原创 MICRON-Change Matters: Medication Change Prediction with Recurrent Residual Networks
Deep learning is revolutionizing predictive healthcare, including recommending medications to patients with complex health conditions.
2025-01-14 15:44:31
400
原创 4SDrug: Symptom-based Set-to-set Small and Safe Drug Recommendation
Drug recommendation is an important task of AI for healthcare. To recommend proper drugs, existing methods rely on various clinical records (e.g., diagnosis and procedures), which are commonly found in data such as electronic health records (EHRs).
2025-01-14 15:42:44
445
原创 MoleRec: Combinatorial Drug Recommendation with Substructure-Aware Molecular Representation Learnin
Combinatorial drug recommendation involves recommending a personalized combination of medication (drugs) to a patient over his/her longitudinal history, which essentially aims at solving a combinatorial optimization problem that pursues high accuracy under
2025-01-13 13:33:08
205
原创 COGNet:Conditional Generation Net for Medication Recommendation
Medication recommendation targets to provide a proper set of medicines according to patients’ diagnoses, which is a critical task in clinics.
2025-01-13 12:56:46
1160
原创 SafeDrug: Dual Molecular Graph Encoders for Recommending Effective and Safe Drug Combinations
Medication recommendation is an essential task of AI for healthcare. Existing works focused on recommending drug combinations for patients with complex health conditions solely based on their electronic health records.
2025-01-13 11:05:33
926
原创 LEAP: Learning to Prescribe Effective and Safe Treatment Combinations for Multimorbidity
Managing patients with complex multimorbidity has long been recognized as a difficult problem due to complex disease and medication dependencies and the potential risk of adverse drug interactions.
2025-01-12 14:07:20
313
原创 RETAIN: An Interpretable Predictive Model for Healthcare using Reverse Time Attention Mechanism
准确性和可解释性是成功预测模型的两个主要特征。通常,为了追求准确性,人们不得不选择像循环神经网络(RNN)这样复杂的黑箱模型,而如果选择准确性稍低但更具可解释性的传统模型,如逻辑回归。这种权衡在医学领域带来了挑战,因为在医学中准确性和可解释性都很重要。我们通过开发适用于电子健康记录(EHR)数据的逆时间注意力模型(RETAIN)来应对这一挑战。
2025-01-11 22:04:32
910
原创 G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation
Medication recommendation is an important healthcare application. It is commonly formulated as a temporal prediction task.
2025-01-11 19:48:16
737
原创 GAMENet: Graph Augmented MEmory Networks for Recommending Medication Combination
深度学习的最新进展正在使医疗保健领域发生革命性变化,包括为药物推荐提供解决方案,特别是为健康状况复杂的患者推荐联合用药。
2025-01-11 13:43:42
998
原创 Deep Learning for Medication Recommendation: A Systematic Survey
Making medication prescriptions in response to the patient’s diagnosis is a challenging task. The number of pharmaceutical companies, their inventory of medicines, and the recommended dosage confront a doctor with the well-known problem of information an
2024-12-30 16:33:20
787
原创 KGAT: Knowledge Graph Attention Network for Recommendation
To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account
2024-12-19 16:09:19
794
原创 DKN: Deep Knowledge-Aware Network for News Recommendation
Online news recommender systems aim to address the information explosion of news and make personalized recommendation for users. In general, news language is highly condensed, full of knowledge entities and common sense.
2024-12-19 16:01:44
870
原创 BPR: Bayesian Personalized Ranking from Implicit Feedback
Item recommendation is the task of predicting a personalized ranking on a set of items (e.g. websites, movies, products).
2024-12-17 20:07:51
1073
原创 Knowledge Graph Convolutional Networks for Recommender
To alleviate sparsity and cold start problem of collaborative filtering based recommender systems, researchers and engineers usually collect attributes of users and items, and design delicate algorithms to exploit these additional information.
2024-12-16 21:30:26
1934
原创 Neural Collaborative Filtering∗
In recent years, deep neural networks have yielded immense success on speech recognition, computer vision and natural language processing.
2024-12-16 18:40:28
1185
原创 LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation
However, we empirically find that the two most common designs in GCNs — feature transformation and nonlinear activation — contribute little to the performance of collaborative filtering. Even worse, including them adds to the difficulty of training and deg
2024-12-16 09:23:25
1185
原创 Leave No Patient Behind: Enhancing Medication Recommendation for Rare Disease Patients
In this paper, we propose a novel model called Robust and Accurate REcommendations for Medication (RAREMed), which leverages the pretrain-finetune learning paradigm to enhance accuracy for rare diseases.
2024-12-13 20:20:10
1053
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人