非负矩阵之Perron-Frobenius定理

1. 矩阵论记号约定

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2. 非负矩阵之Perron-Frobenius定理

1907 年 O. Perron 发现正矩阵的谱有特别有趣的性质。G. Frobenius 在 1908-1912 年间将 Perron 的工作推广到不可约非负矩阵的情形,并得到了新的进一步结果。

Oskar Perron 在1907年发表了关于正矩阵的一些基本发现称之为Perron定理,后来Frobenius将其推广到非负矩阵上,称为Perron-Frobenius定理。

2.1 H.Wielandt 的证明

Perron-Frobenius 理论有很多证明方式,下面介绍 H.Wielandt 的优美证明。

下面先证明一些预备定理,然后着手证明Perron-Frobenius定理,然后基于Perron-Frobenius定理,利用分析学的方法将其推广到一般非负矩阵
Perron-Frobenius定理指出:
带有正数条目的任何方形矩阵 A A A都有一个唯一的特征向量 正数(最多乘以正标量),和 相应的特征值具有多重性且严格 大于任何其他特征值的绝对值。

2.1.1 矩阵可约

在这里插入图片描述
矩阵不可约等价于强连通
在这里插入图片描述
在这里插入图片描述
如果马氏链常返(注意有限闭类是常返类),概率转移矩阵的不可约性质保证了不变测度在忽略常数倍意义下存在且唯一[Norris. Markov Chains. Theorem 1.7.5.+1.7.6.]。

关于不可约矩阵有以下结论:
在这里插入图片描述
在这里插入图片描述

2.1.2 非负矩阵的特征值/特征向量

非负矩阵的谱半径(下面有定义)是它的一个特征值,并且这个特征值对应着非负特征向量。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.1.3 非负矩阵的Collatz-Wielandt公式

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.1.4 正矩阵和非负矩阵的Perron根与特征向量

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

2.1.5 不可约矩阵和本原矩阵的Perron-Frobenius定理

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

定理虽然很长但是整个过程十分优美,思路十分清晰,仔细分析每一步还是很容易看懂的,并且在证明的过程中就能体会为什么一开始要提出“非负不可约矩阵”的概念了,然后应用连续性把一些结果推广到非负矩阵。

2.2 Perron-Frobenius 定理

Perron-Frobenius 定理是正定矩阵理论中的一个基本结果,得名于 Oskar Perron 和 Georg Frobenius。它提供了正定矩阵的重要性质,特别是关于主特征值及其对应特征向量的性质。它有很多不同的形式和推广。一般来说,这个定理可以概括为:如果一个矩阵是一个非负矩阵(所有的元素都是非负的),且它是一个不可约矩阵(对于任意的两个节点,存在一条路径可以从一个节点到达另一个节点),那么这个矩阵存在一个最大的特征值,其对应的特征向量所有元素都是正数。

更具体地说,假设 A 是一个n×n 的非负矩阵,并且是不可约的。那么存在一个最大的特征值 λ m a x λ_{max} λmax ,其对应的特征向量 v 所有元素都是正数。此外, λ m a x λ_{max} λmax 是唯一的,且没有其他特征值的模比它大。这个特征值被称为 Perron-Frobenius 特征值。

该定理陈述如下:

设 A 是一个所有元素非负的方阵,则:

  • A 至少有一个非负实特征值。
  • 此特征值严格为正,并且在所有A 的特征值中有最大的模,记为 λ m a x λ_{max} λmax
  • 存在一个对应于 λ m a x λ_{max} λmax 的特征向量 v,其所有分量均为正。
  • 如果 A 是不可约的(即对应于 A 的有向图中任意两个节点都有路径相连),那么 λ m a x λ_{max} λmax 是简单特征值(代数重数为1)。
  • λ m a x λ_{max} λmax 在模上支配其它所有特征值,即对于 A 的任意其他特征值
    λ,都有 ∣λ∣< λ m a x λ_{max} λmax

Perron-Frobenius 定理在动力系统、图论、经济学和物理学等领域有着各种应用。它特别适用于分析由正定矩阵描述的系统的稳定性和收敛性,并提供了关于这些系统长期行为的见解。

https://zhuanlan.zhihu.com/p/75236945
https://zhuanlan.zhihu.com/p/80952693
https://dna049.com/perronFrobeniusTheory/#%E5%BC%95%E7%90%86-1-%E8%AE%BE-A-%E6%98%AF%E4%B8%8D%E5%8F%AF%E7%BA%A6%E9%9D%9E%E8%B4%9F%E7%9F%A9%E9%98%B5%EF%BC%8C-y-in-mathbf-R-n-backslash-lbrace-0-rbrace-%E4%B8%94%E8%87%B3%E5%B0%91%E6%9C%89%E4%B8%80%E4%B8%AA%E5%88%86%E9%87%8F%E4%B8%BA-0-%E5%88%99-I-A-y-%E7%9A%84%E6%AD%A3%E5%88%86%E9%87%8F%E7%9A%84%E4%B8%AA%E6%95%B0%E5%A4%A7%E4%BA%8E-y-%E7%9A%84%E6%AD%A3%E5%88%86%E9%87%8F%E4%B8%AA%E6%95%B0
https://blog.csdn.net/u010510549/article/details/101145389
参考书籍:Horn R A , Johnson C R . Matrix Analysis[M]// false. 人民邮电出版社, 1985.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值