【矩阵论】7. 范数理论——非负/正矩阵

矩阵论的所有文章,主要内容参考北航赵迪老师的课件

[注]由于矩阵论对计算机比较重要,所以选修了这门课,但不是专业搞数学的,所以存在很多口语化描述,而且对很多东西理解不是很正确与透彻,欢迎大家指正。我可能间歇性忙,但有空一定会回复修改的。

矩阵论
1. 准备知识——复数域上矩阵,Hermite变换
1.准备知识——复数域上的内积域正交阵
1.准备知识——Hermite阵,二次型,矩阵合同,正定阵,幂0阵,幂等阵,矩阵的秩
2. 矩阵分解——SVD准备知识——奇异值
2. 矩阵分解——SVD
2. 矩阵分解——QR分解
2. 矩阵分解——正定阵分解
2. 矩阵分解——单阵谱分解
2. 矩阵分解——正规分解——正规阵
2. 矩阵分解——正规谱分解
2. 矩阵分解——高低分解
3. 矩阵函数——常见解析函数
3. 矩阵函数——谱公式,幂0与泰勒计算矩阵函数
3. 矩阵函数——矩阵函数求导
4. 矩阵运算——观察法求矩阵特征值特征向量
4. 矩阵运算——张量积
4. 矩阵运算——矩阵拉直
4.矩阵运算——广义逆——加号逆定义性质与特殊矩阵的加号逆
4. 矩阵运算——广义逆——加号逆的计算
4. 矩阵运算——广义逆——加号逆应用
4. 矩阵运算——广义逆——减号逆
5. 线性空间与线性变换——线性空间
5. 线性空间与线性变换——生成子空间
5. 线性空间与线性变换——线性映射与自然基分解,线性变换
6. 正规方程与矩阵方程求解
7. 范数理论——基本概念——向量范数与矩阵范数
7.范数理论——基本概念——矩阵范数生成向量范数&谱范不等式
7. 矩阵理论——算子范数
7.范数理论——范数估计——许尔估计&谱估计
7. 范数理论——非负/正矩阵
8. 常用矩阵总结——秩1矩阵,优阵(单位正交阵),Hermite阵
8. 常用矩阵总结——镜面阵,正定阵
8. 常用矩阵总结——单阵,正规阵,幂0阵,幂等阵,循环阵


在这里插入图片描述

7.5 非负/正矩阵

7.5.1 定义

a. 非负/正矩阵定义

一个实矩阵 A = ( a i j ) ∈ R m × n A=(a_{ij})\in R^{m\times n} A=(aij)Rm×n

  • 若对每一 i i i j j j a i j ≥ 0 a_{ij}\ge 0 aij0 ,则称A是非负矩阵, A ≥ 0 A\ge 0 A0

  • 若对每一 i i i j j j a i j > 0 a_{ij}>0 aij>0 ,则称A是正矩阵, A > 0 A>0 A>0

b. 矩阵大小关系

A , B ∈ C n × n A,B\in C^{n\times n} A,BCn×n

  • 如果 A − B ≥ 0 A-B\ge 0 AB0 ,则写 A ≥ B A\ge B AB
  • 如果 A − B > 0 A-B>0 AB>0 ,则 A > B A>B A>B
c. 绝对矩阵

A = ( a i j ) m × n A=(a_{ij})_{m\times n} A=(aij)m×n ,规定其绝对矩阵为 ∣ A ∣ = Δ ( ∣ a i j ∣ ) \vert A\vert\overset{\Delta}{=}(\vert a_{ij}\vert) A=Δ(aij)

在这里插入图片描述

7.5.2 性质

A = ( a i j ) m × n , B = ( b i j ) m × n A=(a_{ij})_{m\times n},B=(b_{ij})_{m\times n} A=(aij)m×nB=(bij)m×n ,有

  1. ∣ A ∣ = ( ∣ a i j ∣ ) ≥ 0 \vert A\vert=(\vert a_{ij}\vert)\ge 0 A=(aij)0 ∣ A ∣ = 0 \vert A\vert=0 A=0 当且仅当 A = 0 A=0 A=0

  2. ∣ k A ∣ = ∣ k ∣ ⋅ ∣ A ∣ , k ∈ C \vert kA\vert=\vert k\vert\cdot \vert A\vert,k\in C kA=kA,kC

  3. ∣ A k ∣ ≤ ∣ A ∣ k , k = 1 , 2 , ⋯ \vert A^k\vert\le \vert A\vert^k,k=1,2,\cdots AkAk,k=1,2,

  4. A > 0 A>0 A>0 ,则 A k > 0 , k = 1 , 2 , ⋯ A^k>0,k=1,2,\cdots Ak>0k=1,2,

  5. ∣ A + B ∣ ≤ ∣ A ∣ + ∣ B ∣ \vert A+B\vert\le \vert A\vert + \vert B\vert A+BA+B

  6. 如果 A ≥ 0 , A ≠ 0 A\ge 0,A\neq 0 A0A=0 ,则 A > 0 A>0 A>0 不一定成立

    ( 1 0 0 1 ) ≥ 0 \left(\begin{matrix}1&0\\0&1\end{matrix}\right)\ge 0 (1001)0 ,但 A A A 不是正矩阵

  7. A ≥ 0 , B ≥ 0 , a ≥ 0 , b ≥ 0 A\ge 0,B\ge 0,a\ge 0,b\ge 0 A0,B0,a0,b0 ,则 a A + b B ≥ 0 aA+bB\ge 0 aA+bB0

  8. A ≥ B , C ≥ D A\ge B,C\ge D AB,CD,则 A + C ≥ B + D A+C\ge B+D A+CB+D

  9. A ≥ B , B ≥ C A\ge B,B\ge C AB,BC ,则 A ≥ C A\ge C AC

A , B , C , D ∈ C n × n A,B,C,D\in C^{n\times n} ABCDCn×n x , y ∈ C n x,y\in C^n x,yCn

  1. ∣ A x ∣ ≤ ∣ A ∣ ⋅ ∣ x ∣ \vert Ax\vert \le \vert A\vert\cdot\vert x\vert AxAx

  2. 0 ≤ A ≤ B , 0 ≤ C ≤ D 0\le A\le B,0\le C\le D 0AB,0CD ,则 $0\le AC\le AD \le BD $

  3. 0 ≤ A ≤ B 0\le A\le B 0AB ,则 0 ≤ A k ≤ B k , k = 1 , 2 , ⋯ 0\le A^k\le B^k,k=1,2,\cdots 0AkBk,k=1,2,

  4. ∣ A ∣ ≤ ∣ B ∣ \vert A\vert\le \vert B\vert AB ,则范数 ∥ A ∥ F ≤ ∥ B ∥ F \Vert A\Vert_F\le \Vert B\Vert_F AFBF ,且 ∥ A ∥ 1 ≤ ∥ B ∥ 1 \Vert A\Vert_1\le \Vert B\Vert_1 A1B1

  5. 非负向量 × 正矩阵 ⇒ 正向量 非负向量\times 正矩阵\Rightarrow 正向量 非负向量×正矩阵正向量 :若 A > 0 A>0 A>0,且 $ x\ge 0$ ,则 A x > 0 Ax>0 Ax>0

    正向量 × 非负矩阵 ( 不存在 0 行 ) ⇒ 正向量 正向量\times 非负矩阵(不存在0行)\Rightarrow 正向量 正向量×非负矩阵(不存在0)正向量 :若 A ≥ 0 , x > 0 A\ge 0,x>0 A0,x>0 ,且 A 的各行不是 0 A的各行不是0 A的各行不是0 ,则也有 A x > 0 Ax>0 Ax>0

    正向量 × 非负矩阵 = 0 ⃗ ⇒ A 是 0 阵 正向量\times 非负矩阵=\vec{0}\Rightarrow A是0阵 正向量×非负矩阵=0 A0 :若 A ≥ 0 , x > 0 A\ge 0,x>0 A0,x>0 A x = 0 Ax=0 Ax=0 ,则 A = 0 A=0 A=0

    A ≥ B , x > 0 A\ge B,x>0 AB,x>0 ,且 A x = B x Ax=Bx Ax=Bx ,则 A = B A=B A=B

7.5.3 正矩阵与谱半径定理

a. 范数约束谱半径

设非负阵 A = ( a i j ) n × n ≥ 0 A=(a_{ij})_{n\times n}\ge 0 A=(aij)n×n0

  • h = A 的最小行和 h=A的最小行和 h=A的最小行和 , l = A 的最小列和 l=A的最小列和 l=A的最小列和

    h ≤ ρ ( A ) ≤ ∥ A ∥ ∞ h\le \rho(A)\le \Vert A\Vert_{\infty} hρ(A)A

    l ≤ ρ ( A ) ≤ ∥ A ∥ 1 l\le \rho(A)\le \Vert A\Vert_1 lρ(A)A1

  • A A A 的各行(或列)的和为正,则 ρ ( A ) > 0 \rho(A)>0 ρ(A)>0

  • A没有0行(或0列),则可知 ρ ( A ) > 0 \rho(A)>0 ρ(A)>0

设正矩阵 A = ( a i j ) n × n > 0 A=(a_{ij})_{n\times n}>0 A=(aij)n×n>0 ,令 h = A 的最小行和 h=A的最小行和 h=A的最小行和 , l = A 的最小列和 l=A的最小列和 l=A的最小列和

  • h < ρ ( A ) < ∥ A ∥ ∞ h<\rho(A)<\Vert A\Vert_\infty h<ρ(A)<A
  • l < ρ ( A ) < ∥ A ∥ 1 l<\rho(A)<\Vert A\Vert_1 l<ρ(A)<A1
  • ρ ( A ) > 0 \rho(A)>0 ρ(A)>0

eg

在这里插入图片描述

B 为正矩阵, h = 4 5 , ∥ B ∥ ∞ = 1 , l = 47 60 , ∥ B ∥ 1 = 62 60 4 5 < ρ ( B ) < 1 , 47 60 < ρ ( B ) < 62 60 \begin{aligned} &B为正矩阵,h=\frac{4}{5},\Vert B\Vert_\infty=1,l=\frac{47}{60},\Vert B\Vert_1=\frac{62}{60}\\ &\frac{4}{5}<\rho(B)<1,\frac{47}{60}<\rho(B)<\frac{62}{60} \end{aligned} B为正矩阵,h=54,B=1,l=6047,B1=606254<ρ(B)<1,6047<ρ(B)<6062


在这里插入图片描述

b. 矩阵间谱半径关系

A , B ∈ C n × n A,B\in C^{n\times n} A,BCn×n ∣ A ∣ ≤ B \vert A\vert\le B AB ,则 ρ ( A ) ≤ ρ ( ∣ A ∣ ) < ρ ( B ) \rho(A)\le \rho(\vert A\vert)<\rho(B) ρ(A)ρ(A)<ρ(B)

0 ≤ A ≤ B 0\le A\le B 0AB ,则 ρ ( A ) ≤ ρ ( B ) \rho(A)\le \rho(B) ρ(A)ρ(B)

A ≥ 0 A\ge 0 A0 ,D为A中任一主子阵,则 ρ ( A ) ≥ ρ ( D ) \rho(A)\ge \rho(D) ρ(A)ρ(D)

A > 0 A>0 A>0 ,则 ρ ( A ) > 0 \rho(A)>0 ρ(A)>0

0 ≤ A < B 0\le A<B 0A<B ,则 ρ ( A ) < ρ ( B ) \rho(A)<\rho(B) ρ(A)<ρ(B)

A ≥ 0 A\ge 0 A0

  • A A A 的每个行和为常数 a a a ,则 ρ ( A ) = a = ∥ A ∥ ∞ \rho(A)=a=\Vert A\Vert_\infty ρ(A)=a=A

  • A A A 的每个列和为常数 b b b ,则 ρ ( A ) = b = ∥ A ∥ 1 \rho(A)=b=\Vert A\Vert_1 ρ(A)=b=A1

c. 谱半径与特向特根关系

引理:

A = ( a i j ) n × n ≥ 0 A=(a_{ij})_{n\times n}\ge 0 A=(aij)n×n0 ,任取正向量 X = ( x 1 x 2 ⋮ x n ) > 0 X=\left(\begin{matrix}x_1\\x_2\\\vdots\\x_n\end{matrix}\right)>0 X= x1x2xn >0 ,则

  • min ⁡ i ( 1 x i ∑ j = 1 n a i j x j ) ≤ ρ ( A ) ≤ max ⁡ i ( 1 x i ∑ j = 1 n a i j x j ) \min_i\limits\left(\frac{1}{x_i}\sum_{j=1}^n\limits a_{ij}x_j\right)\le \rho(A)\le \max_i\limits\left(\frac{1}{x_i}\sum_{j=1}^n\limits a_{ij}x_j\right) imin(xi1j=1naijxj)ρ(A)imax(xi1j=1naijxj)

    ρ ( A ) \rho(A) ρ(A) 的范围与乘积元素的最小值和最大值有关

    ( a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋱ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ) ( x 1 ⋮ x i ⋮ x n ) = ( ∑ j = 1 n ( a 1 j x j ) ⋮ ∑ j = 1 n ( a i j x j ) ⋮ ∑ j = 1 n ( a n j x j ) ) \left(\begin{matrix}a_{11}&a_{12}&\cdots&a_{1n}\\\vdots&\vdots&\ddots&\vdots\\a_{i1}&a_{i2}&\cdots&a_{in}\\\vdots&\vdots&\ddots&\vdots\\a_{n1}&a_{n2}&\cdots&a_{nn}\end{matrix}\right)\left(\begin{matrix}x_1\\\vdots\\x_i\\\vdots\\x_n\end{matrix}\right)=\left(\begin{matrix}\sum_{j=1}^n\limits (a_{1j}x_j)\\\vdots\\\sum_{j=1}^n\limits (a_{ij}x_j)\\\vdots\\\sum_{j=1}^n\limits (a_{nj}x_j)\end{matrix}\right) a11ai1an1a12ai2an2a1nainann x1xixn = j=1n(a1jxj)j=1n(aijxj)j=1n(anjxj)

A = ( a i j ) n × n ≥ 0 A=(a_{ij})_{n\times n}\ge 0 A=(aij)n×n0 A X = λ 1 X AX=\lambda_1X AX=λ1X X = ( x 1 x 2 ⋮ x n ) > 0 ( 正向量 ) X=\left(\begin{matrix}x_1\\x_2\\\vdots\\x_n\end{matrix}\right)>0(正向量) X= x1x2xn >0(正向量) 则有 ρ ( A ) = λ 1 \rho(A)=\lambda_1 ρ(A)=λ1

证明:
若 A X = λ 1 X , 则 ( a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋱ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ) ( x 1 ⋮ x i ⋮ x n ) = ( ∑ j = 1 n ( a 1 j x j ) ⋮ ∑ j = 1 n ( a i j x j ) ⋮ ∑ j = 1 n ( a n j x j ) ) ∴ ∑ j = 1 n ( a i j x j ) = λ 1 x i ⇒ λ 1 = 1 x i ∑ j = 1 n ( a i j x j ) 由引理, λ 1 = min ⁡ i ( 1 x i ∑ j = 1 n a i j x j ) ≤ ρ ( A ) ≤ max ⁡ i ( 1 x i ∑ j = 1 n a i j x j ) = λ 1 ∴ λ 1 恰为谱半径 ρ ( A ) \begin{aligned} &若AX=\lambda_1X,则\left(\begin{matrix}a_{11}&a_{12}&\cdots&a_{1n}\\\vdots&\vdots&\ddots&\vdots\\a_{i1}&a_{i2}&\cdots&a_{in}\\\vdots&\vdots&\ddots&\vdots\\a_{n1}&a_{n2}&\cdots&a_{nn}\end{matrix}\right)\left(\begin{matrix}x_1\\\vdots\\x_i\\\vdots\\x_n\end{matrix}\right)=\left(\begin{matrix}\sum_{j=1}^n\limits (a_{1j}x_j)\\\vdots\\\sum_{j=1}^n\limits (a_{ij}x_j)\\\vdots\\\sum_{j=1}^n\limits (a_{nj}x_j)\end{matrix}\right)\\ &\therefore \sum_{j=1}^n\limits (a_{ij}x_j)=\lambda_1x_i\Rightarrow \lambda_1=\frac{1}{x_i}\sum_{j=1}^n\limits (a_{ij}x_j)\\ &由引理,\lambda_1=\min_i\limits\left(\frac{1}{x_i}\sum_{j=1}^n\limits a_{ij}x_j\right)\le \rho(A)\le \max_i\limits\left(\frac{1}{x_i}\sum_{j=1}^n\limits a_{ij}x_j\right)=\lambda_1\\ &\therefore \lambda_1 恰为谱半径 \rho(A) \end{aligned} AX=λ1X, a11ai1an1a12ai2an2a1nainann x1xixn = j=1n(a1jxj)j=1n(aijxj)j=1n(anjxj) j=1n(aijxj)=λ1xiλ1=xi1j=1n(aijxj)由引理,λ1=imin(xi1j=1naijxj)ρ(A)imax(xi1j=1naijxj)=λ1λ1恰为谱半径ρ(A)

推论

x = ( x 1 x 2 ⋮ x n ) > 0 x=\left(\begin{matrix}x_1\\x_2\\\vdots\\x_n\end{matrix}\right)>0 x= x1x2xn >0 A = ( a i j ) n × n ≥ 0 A=(a_{ij})_{n\times n}\ge 0 A=(aij)n×n0 a ≥ 0 , b ≥ 0 a\ge 0,b\ge 0 a0,b0

  • a X ≤ A x ≤ b X aX\le Ax\le bX aXAxbX ,则 a ≤ ρ ( A ) ≤ b a\le \rho(A)\le b aρ(A)b
  • a X < A x < b X aX< Ax< bX aX<Ax<bX ,则 a < ρ ( A ) < b a< \rho(A)< b a<ρ(A)<b

X ≥ 0 X\ge 0 X0 A > 0 A>0 A>0

  • A X = λ X AX=\lambda X AX=λX ,则 A A A 有正特征向量 X > 0 X>0 X>0 ,且 λ = ρ ( A ) \lambda = \rho(A) λ=ρ(A)

配龙定理

A = A n × n > 0 A=A_{n\times n}>0 A=An×n>0

  • ρ ( A ) > 0 \rho(A)>0 ρ(A)>0 ρ ( A ) \rho(A) ρ(A) 恰是 A A A 的正特根
  • 存在正特根 x > 0 x>0 x>0 ,使 A x = ρ ( A ) x Ax=\rho(A)x Ax=ρ(A)x
  • ρ ( A ) \rho(A) ρ(A) A A A 的单特根
  • 若特根 λ ≠ ρ ( A ) \lambda\neq \rho(A) λ=ρ(A) ,则 ∣ λ ∣ < ρ ( A ) \vert \lambda\vert<\rho(A) λ<ρ(A) ρ ( A ) \rho(A) ρ(A)为唯一极大模特征根)
  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AmosTian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值