慢慢学AI--tensor

Tensor

1. 数据类型

类型解释
torch.IntTensor
torch.FloatTensor
torch.rand浮点型随机(0,1)区间均匀分布
torch.randn浮点,指定维度 N(0,1)分布)
torch.range浮点,自定义起止范围(起,止,步长)
torch.zeros浮点,维度指定,元素值为0

2.Tensor运算

符号解释
torch.abs取绝对值
torch.clamp截取上下范围(a, 上范围,下范围)
torch.mul相乘(tensor,tensor)or (tensor, 标量)
torch.mm矩阵乘法
torch.add求和(tensor+tensor, or tensor+标量)
torch.div除法,(tensor,tensor)or (tensor, 标量)
torch.pow指数,同前
torch.mv矩阵×向量

  自动梯度:Tensor变量在前向传播中生成一张计算图,根据计算图和输出结果计算每个参数需要重新更新的梯度。并通过完成后向传播完成对参数的梯度更新。

3. A sample example

  输入100个具有1000个特征的数据,经过隐藏层变成100个具有100个特征的数据,在经过输出层输出100×10的分类结果数据,并计算损失进行后向传播。

import torch

batch_n = 100  # 输入数据100
hidden_layer = 100  # 经过隐藏层后保留的特征数
input_data = 1000  # 输入数据的特征数
output_data = 10  # 输出数据

# 利用随机生成输入输出数据,以及权重数据
x = torch.randn(batch_n, input_data)
y = torch.randn(batch_n, output_data)
w1 = torch.randn(input_data, hidden_layer)
w2 = torch.randn(hidden_layer, output_data)

epoch_n = 10000  # 训练次数,完成对初始权重参数的优化调整
leaning_rate = 1e-6  # 优化中的学习速率

# 正式训练
for epoch in range(epoch_n):
    h1 = x.mm(w1)
    h1 = h1.clamp(min=0)
    y_pred = h1.mm(w2)  # 前向传播 X*W1*W2

    loss = (y_pred - y).pow(2).sum()
    print("Epoch:{}, Loss:{:.4f}".format(epoch, loss))  # 计算损失
    # 对每个节点链式求导计算出参数的梯度
    gray_y_pred = 2 * (y_pred - y)
    gray_w2 = h1.t().mm(gray_y_pred)  # W2的梯度 h1的转置*grad_y_pred

    grad_h = gray_y_pred.clone()
    grad_h = grad_h.mm(w2.t())
    grad_h.clamp(min=0)
    grad_w1 = x.t().mm(grad_h)  # 计算W1的梯度 X转置*(grad_y_pred * W2的转置) 
    # 更新梯度
    w1 -= leaning_rate * grad_w1
    w2 -= leaning_rate * gray_w2

  当然,在这个例子中,参数都是随机函数生成的并没有什么意义,但基本的神经网络流程则是这样。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值