吉哥系列故事——完美队形II (马拉车算法)
吉哥又想出了一个新的完美队形游戏!
假设有n个人按顺序站在他的面前,他们的身高分别是h[1], h[2] … h[n],吉哥希望从中挑出一些人,让这些人形成一个新的队形,新的队形若满足以下三点要求,则就是新的完美队形:
1、挑出的人保持原队形的相对顺序不变,且必须都是在原队形中连续的;
2、左右对称,假设有m个人形成新的队形,则第1个人和第m个人身高相同,第2个人和第m-1个人身高相同,依此类推,当然如果m是奇数,中间那个人可以任意;
3、从左到中间那个人,身高需保证不下降,如果用H表示新队形的高度,则H[1] <= H[2] <= H[3] … <= H[mid]。
现在吉哥想知道:最多能选出多少人组成新的完美队形呢?
Input
输入数据第一行包含一个整数T,表示总共有T组测试数据(T <= 20);
每组数据首先是一个整数n(1 <= n <= 100000),表示原先队形的人数,接下来一行输入n个整数,表示原队形从左到右站的人的身高(50 <= h <= 250,不排除特别矮小和高大的)。
Output
请输出能组成完美队形的最多人数,每组输出占一行。
Sample Input
2
3
51 52 51
4
51 52 52 51
Sample Output
3
4
思路: 马拉车算法变形,在while循环的时候控制高度即可
AC代码:
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int N=220000;
int t,n,a[N],b[N],len[N];
int mlc()
{
int i,j,k=1;
b[0]=300;//a[i]范围50-250,所以定头为300,中间加0(不在50-250之间就行)
for(i=0;i<n;i++)
{
b[k++]=0;
b[k++]=a[i];
}
b[k++]=0;
/* for(i=0;i<k;i++)
printf("%d ",b[i]);
printf("\n"); */
len[0]=0;
int mx=0,id=0,sum=0;
for(i=0;i<k;i++)
{
if(mx>i)
len[i]=min(mx-i,len[2*id-i]);
else
len[i]=1;
while(b[i+len[i]]==b[i-len[i]])//与模板不一样的地方
{//相等的两种情况,为0或50-250间的数
if(b[i-len[i]]==0)//为0
len[i]++;
else if(b[i-len[i]]<=b[i-len[i]+2])//为50-250,要控制身高,-是左边的,左边身高逐渐上升,所以控制b[i-len[i]]<=b[i-len[i]+2],+2是因为中间有我们加的0
len[i]++;
else break;//不满足跳出
}
if(len[i]+i>mx)
{
mx=i+len[i];
id=i;
}
sum=max(sum,len[i]);
}
return sum-1;
}
int main()
{
int i,j,k;
scanf("%d",&t);
while(t--)
{
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
memset(len,0,sizeof(len));
scanf("%d",&n);
for(i=0; i<n; i++)
scanf("%d",&a[i]);
printf("%d\n",mlc());
}
return 0;
}