一直在等你 一直会等你 计算机视觉中的文章

1、Group Normalization: https://arxiv.org/abs/1803.08494
        解决Batch Normalization中对Batch Size依赖的短板,在目标检测,图像分割,视频分类等任务上,Batch Size往往比较小,导致BN作用的效果比较差。如下图,Group Normalization是对Layer Normalization和Instance Normalization的折中。
在这里插入图片描述

def GroupNorm(x, gamma, beta, G, eps=1e-5):
    # x: input features with shape [N,C,H,W]
    # gamma, beta: scale and offset, with shape [1,C,1,1]
    # G: number of groups for GN
    
    N, C, H, W = x.shape
    x = tf.reshape(x, [N, G, C // G, H, W])
    
    mean, var = tf.nn.moments(x, [2, 3, 4], keep dims=True)
    x = (x - mean) / tf.sqrt(var + eps)
    
    x = tf.reshape(x, [N, C, H, W])
    return x * gamma + beta

        根据实验结果,GN比BN对于Batch Size的敏感性更弱,即鲁棒性更高
在这里插入图片描述
https://github.com/shaohua0116/Group-Normalization-Tensorflow
2、Focal Loss for Dense Object Detection

3、

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值