除沙尘预处理-线性色彩校正

背景

沙尘暴的颗粒半径接近25µm,远远大于雾霾(0.01 ~ 1µm)和雾(1 ~ 10µm),因此除雾算法模型不适用。

由于沙尘天气下空气中悬浮的沙尘颗粒对蓝色光的吸收和对红色光的反射,沙尘暴图像一般呈现黄色,因为黄色光的穿透性和散射性最大,沙尘图像RGB三通道的直方图分布不均衡,同时存在分布较为集中,这使得图像整体看起来偏黄和偏红。沙尘环境下对视频图像采集的影响首先是色彩的偏移。

颜色校正

作者基于统计方法对沙尘暴图像进行预处理,采用基于统计方法的颜色校正方法去除色差,使图像呈现自然的外观。

O m a x c = O m e a n c + μ ∗ O v a r c O m i n c = O m e a n c − μ ∗ O v a r c O_{max}^{c} =O_{mean}^{c}+\mu *O_{var}^{c} \\ O_{min}^{c} =O_{mean}^{c}-\mu *O_{var}^{c} Omaxc=Omeanc+μOvarcOminc=OmeancμOvarc

其中,c表示RGB通道, O m a x c O_{max}^{c} Omaxc表示最大值, O m e a n c O_{mean}^{c} Omeanc表示均值, O v a r c O_{var}^{c} Ovarc表示均方差, μ \mu μ是控制参数。

对每个颜色通道做归一化处理,得到:

O C R c = O c − O m i n c O m a x c − O m i n c O_{CR}^{c} =\frac{O^{c}-O_{min}^{c}}{O_{max}^{c}-O_{min}^{c}} OCRc=OmaxcOmincOcOminc

其中, O C R c O_{CR}^{c} OCRc是颜色校正分量。

亮度改善

颜色校正不能解决光的吸收和散射导致的亮度不均匀问题,后续在HSV域对V分量使用gamma校正改善亮度问题、或者使用直方图均衡处理V通道提高图像对比度。

文章效果

参考文献:

A fusion-based enhancing approach for single sandstorm image -Xueyang Fu

基于色调映射的沙尘视频快速增强算法-钱绪泽

我的个人博客主页,欢迎访问

我的CSDN主页,欢迎访问

我的GitHub主页,欢迎访问

我的知乎主页,欢迎访问

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AomanHao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值