系统学习机器学习之线性判别式(三)--广义线性模型(Generalized Linear Models)

转自:https://www.cnblogs.com/czdbest/p/5769326.html

在线性回归问题中,我们假设image,而在分类问题中,我们假设image,它们都是广义线性模型的例子,而广义线性模型就是把自变量的线性预测函数当作因变量的估计值。很多模型都是基于广义线性模型的,例如,传统的线性回归模型,最大熵模型,Logistic回归,softmax回归。

指数分布族

在了解广义线性模型之前,先了解一下指数分布族(the exponential family)

指数分布族原型如下

image

如果一个分布可以用上面形式在表示,那么这个分布就属于指数分布族,首先来定义一下上面形式的符号:

η:分布的自然参数(natural parameter)或者称为标准参数(canonical parameter)

T (y):充分统计量,通常用T(y) = y

a(η):对数分割函数(log partition function)

:本质上是一个归一化常数,确保概率和为1。

当给定T时,a、b就定义了一个以η为参数的一个指数分布。我们变化η就得到指数分布族的不同分布。

 

论证伯努利分布和高斯分布为指数分布族

image,伯努利分布均值φ,记为Bernoulli(φ),y ∈ {0, 1},所以p(y = 1; φ) = φ; p(y = 0; φ) = 1 − φ

image

对比指数分布族的表达式可以得到:

η = log(φ/(1-φ)) 我们将φ用η表示,则:φ=1/(1+e-η),是不是发现和sigmoid函数一样了。

image

这就表明,当我们给定T,a,b,伯努利分布可以写成指数分布族的形式,也即伯努利分布式指数分布族。

 

同理,在高斯分布image中,有:

image

对比指数分布族,我们得到:

image

因为高斯分布的方差与假设函数无关,因而为了计算简便,我们设方差=1,这样就得到:

image

所以这也表明,高斯分布也是指数分布族的一种。

 

构造广义线性模型(Constructing GLMs)

怎么通过指数分布族来构造广义线性模型呢?要构建广义线性模型,我们要基于以下三个假设:

  1. 给定特征属性和参数后,的条件概率服从指数分布族,即
  2. 预测的期望,即计算。 #h(x) = E[y|x]
  3. 之间是线性的,即

 

构建最小二乘模型

回顾一下,在线性回归中,代价函数y是通过最小二乘法得到的。下面通过广义线性模型来构造最小二乘模型。

线性回归中,假设y|x;θ服从高斯分布N(μ,σ2)N(μ,σ2),根据我们前面的推导,我们知道µ = η,所以根据三个假设有

image

说明:

第一个等号根据我们的假设2得到,=y,也即image

第二个等号根据高斯分布的期望为μ得到

第三个等号根据我们前面推到可得,也即假设1

第四个等号根据假设3得到。

至此,最小二乘模型构建完成,也即为线性回归中使用的线性模型的来源。接下来的工作就是利用梯度下降,牛顿方法求解Θ

 

构建逻辑回归

逻辑回归可以用来解决二分类问题,二分类问题的目标函数是离散值,通过统计学知识我们知道可以选择伯努利分布来构建逻辑回归的模型

在前面的论证中我们得到η = log(φ/(1-φ)) 我们将φ用η表示,则:φ=1/(1+e-η)。根据三个假设,我们有

image

构建完成,这就是逻辑回归中使用的模型。

 

构建Softmax Regression

现在我们考虑一个多分类问题,也即响应变量y有k个值,即y ∈{1 2, . . . , k},首先我们来证明多项分布也同样属于指数分布族。

多分类模型的输出结果为该样本属于k个类别的概率,我们可以用φ1, . . . , φk来表示这k个样本输出的概率。φ1, . . . , φk满足image,但是这样参数就显得有些冗余了,所以我们用φ1, . . . , φk−1来表示,则image

定义T(y)∈Rk-1如下:

image

注意:

在这里T(y)就不等于y了,在这里它是一个k-1维的向量,而不是一个实数。规定(T (y))i表示向量T(y)中第i个元素

另外,引入一个新的符号,如果大括号内为true,则该式等于1,反之为0,例如1{2 = 3} = 0,1{3 =5 − 2} = 1,

这样T (y) 和 y的关系我们可以表示为image

关系可以表示为:image

所以有:

image

所以这样,多项式分布我们也可以写成指数分布族的样式,也即,多项分布也是指数分布族。所以我们可以用广义线性模型来拟合了

通过η的表达式可以得到:ηi=log(φi/φk) 这是ηi关于φi的表达式,将它转化为φi关于ηi,为了方便,我们令,所以有

image

所以可以求得image,代入上图红色方框的等式中,求得image,这个关于的的函数称为Softmax函数(Softmax Function)

 

下面我们使用广义线性构造模型

根据假设3,有ηi = θiT x (for i = 1, . . . , k − 1), where θ1, . . . , θk-1 ∈ Rn+1  同样在这里我们定义θk = 0 所以可以得到:ηk = θkT x = 0

所以模型在给定x的条件下y的分布为:

image

应用在多分类模型上的这个模型称之为softmax regression,它是逻辑回归的一般化。

对于假设函数,我们有假设2可以得到

image

所以现在求解目标函数的最后一步就是参数的拟合问题。最大似然估计得到

image

最大似然函数来求解最优的参数θ,跟前面介绍的一样,可以使用梯度上升或者牛顿方法。

讲了一大堆,其实差别在:

普通线性模型的假设主要有以下几点:

  1. 响应变量Y和误差项ϵ正态性:响应变量Y和误差项ϵ服从正态分布,且ϵ是一个白噪声过程,因而具有零均值,同方差的特性。

  2. 预测量xi和未知参数βi的非随机性:预测量xi具有非随机性、可测且不存在测量误差;未知参数βi认为是未知但不具随机性的常数,值得注意的是运用最小二乘法或极大似然法解出的未知参数的估计值β^i则具有正态性。

  3. 研究对象:如前所述普通线性模型的输出项是随机变量Y。在随机变量众多的特点或属性里,比如分布、各种矩、分位数等等,普通线性模型主要研究响应变量的均值E[Y]。

  4. 联接方式:在上面三点假设下,对 (1.1) 式两边取数学期望,可得:E[Y]={\beta}_0+{\beta}_1x_1+{\beta}_2x_2+\cdot \cdot \cdot +{\beta}_{p-1}x_{p-1},从该式可见,在普通线性模型里,响应变量的均值E[Y]与预测量的线性组合β0+β1x1+β2x2+…+βp−1xp−1通过恒等式 (identity) 联接,当然也可认为通过形为f(x)=x的函数 (link function) 联接二者,即:E[Y]=f({\beta}_0+{\beta}_1x_1+{\beta}_2x_2+ \cdots +{\beta}_{p-1}x_{p-1})={\beta}_0+{\beta}_1x_1+{\beta}_2x_2+ \cdots +{\beta}_{p-1}x_{p-1}

广义线性模型 (generalized linear model) 正是在普通线性模型的基础上,将上述四点模型假设进行推广而得出的应用范围更广,更具实用性的回归模型。

  1. 响应变量的分布推广至指数分散族 (exponential dispersion family):比如正态分布、泊松分布、二项分布、负二项分布、伽玛分布、逆高斯分布。

  2. 预测量xi和未知参数βi的非随机性:仍然假设预测量xi具有非随机性、可测且不存在测量误差;未知参数βi认为是未知且不具有随机性的常数。

  3. 研究对象:广义线性模型的主要研究对象仍然是响应变量的均值E[Y]。

  4. 联接方式:广义线性模型里采用的联连函数 (link function) 理论上可以是任意的,而不再局限于f(x)=x。当然了联接函数的选取必然地必须适应于具体的研究案例。同时存在着与假设1里提及的分布一一对应的联接函数称为标准联接函数 (canonical link or standard link),如正态分布对应于恒等式,泊松分布对应于自然对数函数等。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值