关于GNN的浅显认知
1.GNN是深度学习在图结构数据上的一些模型、方法、和应用。
2.源于CNN和图嵌入。
3.GNN采用在每个节点上分别传播的方式进行学习。
4.GNN通过邻居节点的加权求和来更新节点的隐藏状态。
5.GNN模型的分类:
(1)图卷积网络(GCN)、图注意力网络(GAN)——涉及到传播步骤
(2)图的空域网络(STN)——通常用在动态图上
(3)图的自编码——通常使用无监督学习
(4)图生成网络——生成式网络
6.图神经网络
在一个图结构中,每一个节点由它自身的特征以及与其相连的节点特征来定义该节点。
GNN目标为学习得到一个状态的嵌入向量(包含每个节点的邻居节点的信息)。
f(xv,xco[v],hne[v],xne[v])为局部转化函数,为所有节点所共享,并根据邻居节点的输入来更新节点状态。
g(h,x)为局部输出函数,用于描述输出的产生方式。