图神经网络(GNN):同质图模型【GCN/GraphSAGE/GAT...】、异质图模型【HAN/HetGNN...】

本文探讨了图神经网络在处理同质图和异质图时的不同策略。同质图仅包含单一类型的节点和边,如社交网络,更新节点表示相对简单。然而,异质图具有多种类型的节点和边,如IMDB数据中的演员、电影和导演,这增加了处理的复杂性。异质图神经网络需应对这些挑战,以利用丰富的语义信息。文章提到了一些关于异质图神经网络的资源和论文,帮助读者理解其模型和应用。
摘要由CSDN通过智能技术生成

目前的图神经网络主要针对同质图(节点类型和边类型单一)设计.

  • 同质图中只有一种类型的节点和边(例如,只有朋友关系的社交网络),网络结构较为简单.因此,同质图神经网络通常只需要聚合单一类型的邻居来更新节点的表示即可(例如,通过在朋友关系下的邻居来更新节点表示).
  • 但真实世界中的图大部分都可以被自然地建模为异质图(多种类型的节点和边,如下图所示,IMDB数据中包含三种类型的节点Actor、Movie和Director,两种类型的边Actor-Moive和Movie-Director). 多种类型的节点和丰富的语义信息给异质图神经网络设计带来了巨大挑战.



参考资料:
知乎专栏:异质图神经网络
异质图的处理(一)——Heterogeneous Graph Neural Network
2019年,异质图神经网络领域有哪些值得读的顶会论文?
异质图

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值