2023图像去雨综述——单幅图像去雨数据集汇总

文章介绍了单幅图像去雨的三种主要方法:基于滤波器、先验知识和深度学习。深度学习,特别是CNN和GAN,因其高效性和泛化能力成为主流。列举了多个训练和测试数据集,预示着该领域的持续发展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

单幅图像去雨方法

       由于在单幅图像中,雨滴通常会干扰人们的视觉感知,因此从单个图像中去除雨滴是一个具有挑战性的问题。现有的单幅图像去雨方法可以分为三类:基于滤波器的方法、基于先验的方法和基于深度学习的方法。

1.基于滤波器的方法

       该方法利用雨线的色度特性,首先通过计算获得粗略的无雨图像,然后通过滤波技术得到去雨图像。为了获得更好的视觉质量,这种方法还结合了雨线的亮度特征,对引导图像进行了修正。但是,这种方法在面对复杂场景时效果可能会较差。

2.基于先验的方法

       该方法通过利用某些预先知道的信息来消除图像中的雨滴,以实现改善图像质量的目的。例如,根据先验知识,我们知道雨滴通常具有较小的尺寸和较高的亮度,因此可以通过去除小尺寸和/或高亮度像素来消除雨滴。但是,这种方法对于某些特殊情况可能不太适用。

3.基于深度学习的方法

       该方法应用深度神经网络来提取和学习图像中雨滴的特征信息,并根据学习到的模型对图像进行去雨处理。这种方法更加高效、准确、泛化能力强,同时可以自适应地处理各种不同场景和多种形式的降雨。基于深度学习的方法通常需要大量的训练数据和计算资源,但是它们可以提供更好的结果。

在基于深度学习的方法中,卷积神经网络(CNN)是最常用的模型之一。这种模型可以通过多层的卷积层、池化层和全连接层来提取和学习图像中的特征信息。在训练过程中,模型会根据输入的带雨图像和对应的无雨图像之间的差异来进行优化,以实现去雨处理的目的。

另一种常用的深度学习模型是生成对抗网络(GAN),它由两个部分组成:生成器和判别器。生成器负责生成逼真的无雨图像,而判别器则负责判断生成的图像是否真实。通过在这两个网络之间进行训练,可以生成更加逼真的无雨图像。

总的来说,单幅图像去雨方法是一个非常具有挑战性的问题,但是基于深度学习的方法为这个问题的解决提供了新的思路和方向。随着技术的不断发展,相信未来会有更多的方法和技术被应用到这个领域中,以实现更好的去雨效果。

单幅图像去雨数据集汇总:

训练数据集:RainTrainL、RainTrainH、Rain200L、Rain200H、Rain12600、DDN-Data、DID-Data、SPA-Aata、Rain800、Rain1200

测试数据集:Rain100L、Rain100H、deraining_Rain200L、Rain1400、deraining_Rain200H、deraining_DDN-Data、deraining_DID-Data、deraining_SPA-Aata、Rain800、Rain1200

其中训练集Rain12600对应的测试集Rain1400

 

 

### 如何在 MATLAB 中计算单幅图像的信噪比 (SNR) 为了计算单幅图像的 SNR,可以采用如下方法: 对于一幅原始无噪声图像 \( X \),以及该图像加入一定量噪声后的版本 \( Y \),可以通过下面公式来衡量这两者之间的信噪比: \[ \text{SNR} = 10\log_{10}\left(\frac{\sum(X(:) .* X(:))}{\text{MSE}} / \text{numel}(Y)\right)[^1] \] 其中, - MSE 表示均方误差(Mean Squared Error),即两个信号之间差异程度的一种度量; - `X` 是原始未受污染的理想情况下的数据矩阵; - `Y` 则代表含有干扰成分的实际观测到的数据集。 具体实现过程如下所示: ```matlab function snrValue = calculateImageSNR(cleanImg, noisyImg) % 计算干净图像的能量 signalEnergy = sum(cleanImg(:).^2); % 计算均方差(Mean Square Error) mseValue = mean((cleanImg - noisyImg).^2, 'all'); % 如果mse接近于零,则说明几乎没有噪音存在 if mseValue ~= 0 snrValue = 10 * log10(signalEnergy ./ mseValue); else disp('Warning: The input images are identical or nearly so.'); snrValue = Inf; end end % 使用函数的例子 originalImage = imread('example_image.png'); % 加载原图 noisyImage = imnoise(originalImage,'gaussian',0,0.01); % 添加一些随机高斯白噪声 snrResult = calculateImageSNR(double(originalImage), double(noisyImage)); fprintf('The calculated SNR value is %.2f dB\n', snrResult); ``` 上述代码定义了一个名为 `calculateImageSNR` 的自定义函数,它接收两张相同尺寸大小的灰度级或彩色图像作为参数——一张是没有被破坏前的状态(`cleanImg`);另一张则是经过某种形式损坏之后的结果(`noisyImg`)。接着通过调用此函数并传入相应的参数即可得到最终所求得的信噪比数值。 需要注意的是,在实际应用当中可能还会遇到其他类型的失真情形,比如椒盐噪声、泊松分布等不同性质的扰动源影响下产生的变化模式。因此当面对特定应用场景时应当灵活调整算法细节以适应具体情况的要求[^4]。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值