线性回归 ————误差 似然函数 高斯分布 最小二乘法 R2评估项 梯度下降

本文探讨了似然函数为何采用累乘形式,解释了其与数据拟合度的关系,以及似然函数值越大表示预测越准确的概念。同时,介绍了在大数据集线性回归中梯度下降法的应用,及其对数据预处理的要求,强调了高斯分布假设的重要性。
摘要由CSDN通过智能技术生成

Q1:为什么是似然函数是累乘?(可以参考以下链接

https://zhidao.baidu.com/question/473897853.html

似然函数 什么样的[公式] 参数跟我们的数据组合之后离真实值越近

似然函数是关于参数的函数

似然函数中,真实值与预测值越接近,似然函数值就越大 

所以似然函数越大越好

去掉常数项就是最后的最小二乘法(越小越好)

 

线性回归求解

Q2 .凸优化?

直接式:实际上对于数据集很大的线性回归,X的逆很难算,用这样的方式不大现实。所以有了梯度下降法

??所以数据在使用之前要处理,转化成符合高斯分布

因为假设的就是服从高斯分布??

由于梯度下降是每个方向的偏导数的组合,所以实际上对于每个方向的[公式] 值,都可以根据对其求得的偏导值直接进行[公式] 的更新

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值