【ML】李宏毅三:梯度下降&分类(高斯分布)

本文探讨了梯度下降法中的学习率调整策略,特别强调了在多参数情况下考虑归一化微分的重要性。介绍了Adagrad算法,以及如何通过二次微分来衡量距离最小值。讨论了极大似然估计在高斯分布中的应用,以及特征维数对分类效果的影响。最后总结了协方差矩阵共享后的模型改进和关键步骤。
摘要由CSDN通过智能技术生成

等高线的法线垂直于切线,:

每次计算

一次归点,然后根据归点梯度下降;再根据其结果算新的归点,再梯度下降。。。。。

 

在做梯度下降的时候,小心的调learning rate

最好每一个参数都有一个learning rate,推荐使用adagrad 

case:利用过去所有微分值的均方根

 

解释:

只考虑一个参数时:

 考虑多个参数时,以上论述就不一定成立了:

只看w1(蓝色):a比b离得远,则微分值越大

 只看w2(绿色):c比d离得远,则微分值越大

但结合起来看就不是了:a的微分值明显比c小,但是a距离原点更远,所以跨参数比较的话,上述就不成立了!

 所以正确做法是:用一次微分值/二次微分值,来算距离最低点的距离 

 是个常数,表示一次微分,来代替二次微分(为了好算)

 

随机梯度下降: 

 用vector来描述一个输入(宝可梦)

极大似然估计:通过结果推算来源的概率

高斯分布 ,假设是个function,每个点都是从高斯分布取样出来的。

每个点离黄色的中心点越近,取样出来的概率就越大

 

 因为每个蓝色点概率独立,所以黄色点sample所有79个蓝色点的概率等于每个想乘

算极大似然值:取平均(因为高斯分布是正态分布)

 

 算出最有可能sample所有蓝点的极大似然之后,开始分类:

水系和普通系分类效果不是很好,正确率只有47%,如果升维呢?

增加属性到7唯 

 

 7维效果仍然不理想,减少两个function的参数

 

共用协方差矩阵后,准确率提高

 

 3步总结:

后验概率:

 

 简化共识:

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

洋气月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值