等高线的法线垂直于切线,:
每次计算
一次归点,然后根据归点梯度下降;再根据其结果算新的归点,再梯度下降。。。。。
在做梯度下降的时候,小心的调learning rate
最好每一个参数都有一个learning rate,推荐使用adagrad
case:利用过去所有微分值的均方根
解释:
只考虑一个参数时:
考虑多个参数时,以上论述就不一定成立了:
只看w1(蓝色):a比b离得远,则微分值越大
只看w2(绿色):c比d离得远,则微分值越大
但结合起来看就不是了:a的微分值明显比c小,但是a距离原点更远,所以跨参数比较的话,上述就不成立了!
所以正确做法是:用一次微分值/二次微分值,来算距离最低点的距离
是个常数,表示一次微分,来代替二次微分(为了好算)
随机梯度下降:
用vector来描述一个输入(宝可梦)
极大似然估计:通过结果推算来源的概率
高斯分布 ,假设是个function,每个点都是从高斯分布取样出来的。
每个点离黄色的中心点越近,取样出来的概率就越大
因为每个蓝色点概率独立,所以黄色点sample所有79个蓝色点的概率等于每个想乘
算极大似然值:取平均(因为高斯分布是正态分布)
算出最有可能sample所有蓝点的极大似然之后,开始分类:
水系和普通系分类效果不是很好,正确率只有47%,如果升维呢?
增加属性到7唯
7维效果仍然不理想,减少两个function的参数
共用协方差矩阵后,准确率提高
3步总结:
后验概率:
简化共识: