大家好,我是【同学小张】。持续学习,持续干货输出,关注我,跟我一起学AI大模型技能。
文章目录
0. 什么是RAG
大模型也不是万能的,也有局限性。
- LLM 的知识不是实时的
- LLM 可能不知道你私有的领域/业务知识
RAG(Retrieval Augmented Generation)顾名思义:通过检索的方法来增强生成模型的能力。你可以把这个过程想象成开卷考试。让 LLM 先翻书,再回答问题。
1. RAG基本流程

看图就很容易理解RAG的流程了:
(1)私有知识通过切分、向量化保存到向量数据库中,供后续使用
(2)用户提问时,将用户提问用同样的方式向量化,然后去向量数据库中检索
(3)检索出相似度最高的k个切分段落
(4)将检索结果和用户的提问放到Prompt模板中,组装成一个完整的Prompt
(5)组装好的Prompt给大模型,让大模型生成回答
理想状态下,大模型是完全依赖检索出的文档片段进行组织答案的
简化一下,可以看出RAG有两大过程:

订阅专栏 解锁全文
2796

被折叠的 条评论
为什么被折叠?



