【ML】基于机器学习的心脏病预测研究(附代码,lightgbm模型)

本文介绍了使用机器学习预测心脏病的实战项目,通过LightGBM模型进行二分类任务。数据来源于UCI和Kaggle,经过预处理,直接进行模型搭建。采用8:2比例划分训练集和测试集,训练集准确率100%,测试集准确率98.54%。完整代码和数据集获取方式在文中详细说明。
摘要由CSDN通过智能技术生成

写在前面:
首先感谢兄弟们的关注和订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。(专栏订阅用户订阅专栏后免费提供数据集,代码贴在博文中,超级VIP用户不在服务范围之内,不想订阅专栏的兄弟们可以私信我详聊)  

Hello,大家好,我是augustqi。今天手把手带大家做一个机器学习实战项目:基于机器学习的心脏病预测研究。多的不说,少的不唠,下面开始今天的教程。

  以下内容,完全是我根据参考资料和个人理解撰写出来的,不存在滥用原创的问题。

1. 项目介绍

  这是一个基于机器学习的二分类任务,根据给定“患者”的某些属性信息,预测是否患有心脏病。本项目使用的数据来源于UCI机器学习库。

UCI机器学习库中,一共包含4个关于心脏病诊断的数据集,分别是:

  • 1、cleveland.data

  • 2、hungarian.data

  • 3

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器不学习我学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值