【ML】基于LSTM的心脏病预测研究(附代码和数据集,系列1)

本文介绍了使用PyTorch构建LSTM网络进行心脏病预测的研究,详细阐述了数据集、网络结构、模型训练和测试过程。通过5000次训练,模型在测试集上达到了89.27%的准确率,但还有提升空间。
摘要由CSDN通过智能技术生成

写在前面:
首先感谢兄弟们的关注和订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。
(专栏订阅用户订阅专栏后免费提供数据集,代码贴在博文中,超级VIP用户不在服务范围之内,不想订阅专栏的兄弟们可以私信我详聊)

之前创作过心脏病预测研究文章如下:
【ML】基于机器学习的心脏病预测研究(附代码和数据集,逻辑回归模型)
【ML】基于机器学习的心脏病预测研究(附代码,lightgbm模型)

本次实战的项目是:基于LSTM的心脏病预测研究(附代码和数据集),单向LSTM,1×13数据视角,妥妥的干货,请收藏后慢慢品。

环境:

python版本3.6
pytorch==1.8.0+cpu
numpy==1.19.3
matplotlib==3.2.1
pandas==1.0.5

为什么会写这篇文

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器不学习我学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值