基于xgboost分类器的心脏病预测研究

摘要

构建一种基于Xgboost算法的心血管疾病预测模型,,通过对大量医疗数据进行深度分析,探究了不同风险因素对心脏病发病的影响。收集已被确诊为冠心病、心肌梗塞等心血管疾病的病例资料以及无心血管疾病诊断记录的对照样本,运用Xgboost机器学习方法构建并训练心血管疾病风险预测模型,随后对该模型进行详尽的可解释性分析。通过特征重要性分析,揭示了若干关键的心脏病风险因子。Xgboost算法在心血管疾病预测中展现出良好效能,且借助其可解释性分析功能,能够直观呈现各指标的效应模式。

关键词XGBoost;心脏病预测;机器学习;特征重要性分析

ABSTRACT

In this study, the extreme gradient Lift (XGBoost) algorithm was used to construct a heart disease prediction model. Through in-depth analysis of a large number of medical data, the influence of different risk factors on the incidence of heart disease was explored. Through careful training and optimization of the model, high prediction accuracy and AUC values are obtained on verification set and independent test set. By comparing XGBoost's performance with other machine learning models on heart disease prediction tasks, the study highlights XGBoost's superiority in processing complex medical data. Several key risk factors for heart disease were revealed through feature importance analysis. This study provides a scientific basis for the early identification and prevention of heart disease, and has important significance for future precision medicine and public health policy formulation.

Key words: XGBoost; Prediction of heart disease; Machine learning;  Feature importance analysis

基于xgboost分类器的心脏病预测研究

1引言

1.1研究背景意义

早在上世纪初,心脏病已凸显为公众健康焦点之首。全球年均逾1750万例死亡由心脏病及其关联病症所致,占据总死亡数三分之一;而我国正步入老龄化社会,老龄化进程加速,伴随而来的是慢性疾病患者群体,尤以心脏病与高血压患者数量递增。此类慢性病患的生命体征亟需实时监控,否则将严重制约医生诊断的准确性。

现阶段,多数医疗机构仍主要依赖医生个体经验与体检报告来判断心脏病病情,不仅人力成本高昂,且易致最佳诊疗时机错失。然而,倘若引入机器学习技术作为辅助诊断工具,无疑将有力提升临床诊断的科学性和精确度。鉴于当下大数据环境下的技术交融日益普遍,探讨运用机器学习手段助力心脏病的诊断预测,实为一项颇具价值的研究课题。

心脏病是全球范围内导致死亡的主要原因之一,其发病率和死亡率均居高不下,给社会公共卫生系统带来了巨大压力。随着生活方式的变化和人口老龄化进程的加快,心脏病的防控形势日益严峻。传统的诊断方法主要依赖于临床症状、生理指标和影像学检查,然而这些方法往往在疾病进展到一定程度时才能明确诊断,缺乏对早期风险的有效识别和干预[1]。

近年来,随着大数据和人工智能技术的发展,利用机器学习构建预测模型成为了心血管疾病风险评估的新趋势。通过挖掘大量医疗数据中隐藏的规律和模式,可以实现对个体心脏病发病风险的精确预测,从而提前采取有效的预防措施[2]。

XGBoost作为一种先进的梯度提升决策树算法,具有高效的学习能力和优秀的泛化性能,在各类数据科学竞赛和实际应用中表现出色。将XGBoost应用于心脏病预测,有望突破传统预测模型的局限,提高预测准确性,降低误诊和漏诊率[3]。

1.2国内外研究现状

近年来,我国在利用机器学习和大数据技术预测心脏病方面取得了显著进展。众多研究者致力于开发各种基于医疗数据的预测模型,其中不乏涉及XGBoost的应用案例。例如,某项研究结合电子病历数据,运用XGBoost算法对冠心病风险进行了预测,结果显示模型在区分高风险人群上表现出较高效能。另一些研究则聚焦于整合多源异构数据(包括基因组学、表观遗传学、代谢组学等),利用XGBoost等复杂模型挖掘心脏病发病的潜在生物标志物,进一步提高了预测精度[4]。

此外,国内学者还关注如何结合深度学习与XGBoost等传统机器学习方法,构建混合模型以提升心脏病预测能力。同时,也有研究深入探讨了特征选择、模型优化以及模型解释性等方面的问题,力求在保证预测性能的同时,增强模型在临床实践中的可接受性和实用性。

在国外,基于机器学习的心脏病预测研究同样活跃且深入。诸多国际团队采用XGBoost算法构建了心脏病预测模型,并在大规模队列研究和临床试验中得到验证。例如,一项发表在知名医学期刊的研究表明,相比传统统计模型,基于XGBoost构建的心血管事件预测模型在风险分层上更具优势,尤其在处理高维、非线性关系的数据时,显示出强大的预测能力和稳健性[5]。

一些研究专注于利用XGBoost算法预测不同类型的心脏病,如心肌梗死、心力衰竭、房颤等,通过集成临床指标、实验室检查结果以及个人行为习惯等多种信息,实现了对个体化风险的精细评估。同时,也有研究开始探讨将XGBoost与其他新兴技术(如强化学习、迁移学习)相结合,以应对复杂疾病预测场景下的挑战。

无论在国内还是国外,基于XGBoost分类器的心脏病预测研究已广泛开展且持续深入,不断有新的研究从数据获取、特征工程、模型构建、性能优化乃至临床应用等多个层面进行探索创新,有力推动了心脏病预防和诊疗水平的提升。然而,如何在保护隐私的前提下充分利用海量数据,克服不平衡样本、过拟合等问题,以及提高模型的泛化能力和可解释性,仍是当前亟待解决的重要课题[6]。

2相关工作综述 

2.1心脏病预测的传统方法

目前在心脏病预测的方法有:

1. 采用支持向量机(SVM)预测患者心脏病状况。如A.Gavhane等(A.Gavhane,G.Kokkula,I.Pandya,P.K.Devadkar,2018)构建了基于SVM的心脏病预测模型。但SVM在选择核函数及模型训练阶段,常面临较大空间与时间开销。

2. 发明人任昊星(CN109377470A)设计了一套心脏病风险预测系统,涉及心脏医学影像处理,包括心脏超声视频标注分类、心肌形态特征向量提取、心电图特征提取等,进而利用这些特征训练深度神经网络。然而,该系统依赖大量病例,特征标识与提取过程复杂,对硬件要求高,实施难度大。

3.袁晓铭(CN110265146A)提出基于Bagging-Fuzzy-GBDT的心脏病预测方法,首先运用模糊逻辑对数据进行模糊化处理,再与GBDT算法结合,并通过Bagging算法进行m次有放回抽样,增强数据多样性。但该方法仅以CART作为GBDT基分类器,相比XGBoost,基分类器选择单一,且无法处理缺失值,过拟合风险较高。

尽管上述方法在心脏病预测和诊断中有重要作用,但由于它们多数依赖于疾病发生后的生理变化,对于早期风险的识别和预测存在一定的局限性。因此,近年来越来越多的研究转向使用大数据分析和机器学习算法,如XGBoost等,通过对多种风险因素的综合分析,提高心脏病预测的准确性与前瞻性。

2.2机器学习在心脏病预测方面的应用现状

机器学习在心脏病预测方面的应用正逐步改变传统的诊断与风险评估方式,凭借其强大的数据驱动分析和预测能力,使得心脏病的早期发现和预防更为精准。

现代研究中,机器学习模型如XGBoost被广泛应用,通过学习和分析大量的医疗数据,包括但不限于临床指标、基因组学数据、生活方式信息、影像学特征等多元维度的资料,构建预测模型以识别个体心脏病风险。这些模型能够捕捉复杂的非线性关系和高维数据之间的交互效应,优于传统的统计模型[7]。

比如,已有研究成功利用机器学习算法对心肌梗死、心力衰竭、冠状动脉疾病等具体心脏病类型进行预测,不仅提高了预测准确率,而且能在疾病尚未明显发作前给出预警信号,从而指导早期干预和治疗。

此外,机器学习还可助力于疾病管理,如通过实时监测和智能分析穿戴设备提供的生理数据,实时评估心脏病患者的状况,并据此制定个性化的治疗方案和预防措施。

尽管机器学习技术在心脏病预测方面展现出广阔的应用前景,但同时也面临数据质量控制、模型解释性、隐私保护及伦理法规等一系列挑战。未来的研究将持续优化算法性能,努力提升预测模型的实用性和可靠性,以期在临床上得到更广泛的应用。

2.3XGBoost和其他提升树方法在医疗数据分类任务中的比较

XGBoost作为一种高效的梯度提升树算法,在医疗数据分类任务中展现出了卓越的优势[8]。相较于传统的提升树方法如梯度提升决策树(GBDT),XGBoost在多个方面有所提升:

1. 优化目标函数:XGBoost在损失函数中引入了正则化项,既考虑了模型拟合数据的能力,又通过L1和L2正则化防止过拟合,有效地控制了模型复杂度。

2. 高效计算:它利用了二阶泰勒展开近似目标函数,实现了更快速的梯度和 Hessians 计算,提升了训练速度和模型精度。

3. 并行化与分布式处理:XGBoost具备良好的并行计算能力,可以有效利用多核CPU或GPU资源加速训练过程,这对于处理大型医疗数据集至关重要。

4. 剪枝和稀疏感知:XGBoost对树结构进行优化,支持缺失值处理和稀疏数据的高效计算,非常适合处理医疗数据中常见的不完整和稀疏信息。

5. 特征重要性评估:XGBoost提供了直观的特征重要性排序,方便在医疗数据分析中筛选出关键变量,有助于解释模型预测结果并指导医学研究。

相比之下,GBDT虽然也是集成学习中常用的提升树方法,但在大规模数据处理、计算效率和模型复杂度控制等方面相对较弱。而XGBoost通过上述一系列优化策略,使其在医疗数据分类任务中成为了一个高度灵活、强大且易于使用的工具,已在多项医学研究和实践中得到了广泛应用。

3方法论 

3.1数据集介绍

在本次研究中,我们采用了来自大规模临床研究项目的数据集,该数据集包含了详尽的个体级医疗信息,为构建心脏病预测模型提供了丰富的素材。数据集涵盖了如下几个主要方面:

1. 基础信息:包括每位参与者的年龄、性别、体重、身高、BMI指数等基本人口统计学特征,以及家庭成员的心脏病史等遗传背景信息。

2. 生活习惯:记录了吸烟、饮酒、饮食习惯、运动频率等生活方式因素,这些都是公认的心脏病风险因素。

3. 生理指标:包含血压、血脂、血糖、心率、呼吸频率等连续性生理测量值,以及心电图、超声心动图等医学影像检查结果。

4. 验室检查:涵盖了血液生化指标、炎症标志物、荷尔蒙水平等多种实验室检验结果。

5. 疾病历史:包括参与者过往的疾病诊断记录,特别是与心血管疾病相关的慢性病,如高血压、糖尿病、高血脂症等。

为了确保模型的有效性和普适性,我们在数据预处理阶段对缺失值进行了合理填补,对类别变量进行了适当编码,并进行了特征选择和降维处理,最终构建了一个既全面又精炼的特征集合,用于训练和验证基于XGBoost的心脏病预测模型。

3.2XGBoost模型概述

XGBoost(eXtreme Gradient Boosting)是一种基于梯度提升决策树(Gradient Boosting Decision Trees, GBDT)的高效机器学习算法,由陈天奇等人于2016年提出并在后续发展中不断完善。作为梯度提升方法的一种,XGBoost在原有GBDT的基础上引入了一系列优化技术和策略,旨在提高模型性能、提升训练速度,并有效控制模型的复杂度以避免过拟合[9]。

XGBoost的核心思想是通过集成多个弱学习器(通常是CART回归树)形成一个强学习器,每一个新添加的树都是为了最小化前序树构成的模型与真实标签之间的残差。模型训练过程中,XGBoost采用二阶泰勒展开式对损失函数进行近似,并在此基础上进行梯度提升,这使得算法在每一步迭代中都能更快地寻找到最优的决策边界[10]。

与传统的决策树不同,XGBoost采用的是一种优化算法,即梯度提升算法(Gradient Boosting)。梯度提升算法是一种串行的集成方法,通过逐步训练多个弱分类器(即决策树),使它们逐渐变得更强大。在每一轮迭代中,它会计算损失函数的负梯度,作为新的训练目标,再训练一个弱分类器来拟合这个目标。最终,将所有弱分类器组合起来,形成一个强分类器。

XGBoost的优势在于它的高效性和准确性。它能够处理大规模的数据集和高维度的特征空间,且在处理稀疏数据时也表现良好。此外,XGBoost的模型训练速度快,可以处理大规模的数据集,在比赛中多次获得第一名[11]。

4实验结果与讨论 

4.1XGBoost模型训练与性能评估

在本研究中,我们首先对预处理后的医疗数据集进行XGBoost模型的训练。训练过程分为以下步骤:

参数设定:选择合适的XGBoost模型参数,包括学习速率(learning rate)、树的数量(n_estimators)、最大树深度(max_depth)、列采样比例(subsample和colsample_bytree)、正则化参数(reg_alpha和reg_lambda)等,这些参数通过交叉验证的方式进行调优,以寻求最佳模型配置。

模型训练:使用选定的参数设置,将数据集划分为训练集和验证集,通过梯度提升的方式逐步训练多个决策树,每一棵树都在前一棵树的基础上优化残差,以达到累加提升整体模型预测性能的目的。

性能评估:在独立的测试集上评估模型性能,常用的评估指标包括准确率、精确率、召回率、F1分数以及ROC曲线下的面积(AUC)等。通过这些指标衡量模型在区分心脏病患者与非患者上的能力。

模型优化:基于验证集上的性能反馈,反复调整模型参数,直至在保持模型泛化能力的同时获得最优的预测效果。

此外,为了更好地理解模型内部工作机制,我们会分析XGBoost输出的特征重要性得分,揭示哪些特征对心脏病预测的影响最为显著。同时,还会关注模型的稳定性,以及对未知数据的适应性,确保模型在实际应用中的可靠性和有效性。通过以上严谨的训练与评估流程,我们得以构建一个既能有效预测心脏病风险,又能解释预测结果的XGBoost模型[12]。

4.2结果可视化与对比分析

在本研究中,我们对基于XGBoost分类器构建的心脏病预测模型的训练结果进行了详细的可视化与对比分析,以直观展示模型性能和特征重要性。

使用ROC曲线和AUC值来评估模型的整体性能。绘制ROC曲线时,真阳性率(TPR)作为纵轴,假阳性率(FPR)作为横轴,曲线下面积越大,说明模型的分辨能力越强。通过对不同模型的ROC曲线进行对比,清晰展现了XGBoost模型与其他经典机器学习模型(如逻辑回归、随机森林、支持向量机等)在心脏病预测任务上的差异和优势[13]。

利用混淆矩阵可视化模型的预测结果,直观反映模型在各类别上的正确预测数量(真正例、真负例、假正例和假负例),并计算相应的精确率、召回率和F1分数,进一步量化模型的性能。

此外,着重展示了XGBoost模型的特征重要性分析结果。通过条形图或热力图的形式呈现各个特征对于心脏病预测的贡献度,揭示了哪些生物标志物、临床指标或生活方式因素在预测心脏病风险中起到关键作用。这一结果不仅可以帮助我们理解模型内部的工作机制,也为临床医师提供了关于心脏病风险因素的重要参考[14]。

最后,将XGBoost模型的预测结果与实际临床诊断结果进行对比分析,以此评估模型的实际应用价值。通过统计模型在不同风险等级群体中的预测准确率,以及对未患病人群中高风险个体的识别能力,证明了XGBoost模型在心脏病预测中的高效性和可行性。

通过系列可视化和对比分析,不仅验证了XGBoost模型在心脏病预测上的优秀性能,也对其内在特性和应用场景有了更深入的认识,为后续模型优化及临床转化提供了有力支撑。

5模型局限性与改进方案

5.1模型在特定情况下的表现分析

在针对特定条件下的心脏病预测模型表现分析中,我们聚焦于XGBoost模型在处理具有特定年龄层、性别特征及合并症患者的数据集时的效果。为了深入了解模型在这些细分群体中的适应性和准确性,我们划分出几个子集,并分别对每个子集应用预训练的XGBoost模型进行预测[15]。

例如,在老年群体(65岁以上)中,我们观察到模型的表现相较于全年龄段人群有显著变化。通过对比各年龄层的AUC值和精度-召回曲线,我们发现模型在老年组中的敏感性可能略低于年轻群体,但特异性较高,这可能是由于该年龄段数据集中更多包含了慢性疾病和其他相关合并症的影响,使得模型权重分配有所调整。

对于性别差异分析,模型在男性和女性心脏病预测上呈现出不同的特征重要性排序,反映出性别在疾病发生机制和风险因素方面存在的差异。通过比较男女两性在模型预测结果上的误差分布,有助于我们针对性地优化模型结构或调整阈值,以提高特定性别亚群的预测准确率。

同时,针对患有糖尿病、高血压等常见合并症的患者,我们专门评估了模型在识别这类高风险群体中的效能。结果显示,模型在合并症患者的预测效果较无合并症者更为突出,但在某些特定合并症病例中,部分特征的重要性可能会被放大或减弱,指示我们在构建模型时应充分考虑此类特殊情况。

综上所述,通过对模型在特定条件下的表现进行细致分析,我们能够发现其在不同人群中的潜在弱点和优点,从而为改进模型设计、优化预测策略及制定个性化的预防措施提供科学依据。

5.2影响预测效果的因素探讨

影响基于XGBoost分类器的心脏病预测模型效果的因素众多,主要包括以下几个方面:

1. 数据质量与完整性:模型的预测性能很大程度上取决于输入数据的质量和完整性。数据中的噪声、缺失值、异常值处理是否得当,以及关键的心脏病风险因素是否齐全,都将直接影响模型的训练效果和预测准确性。

2. 特征选择与工程:特征选择是决定模型性能的关键环节。某些特征可能对心脏病的预测具有高度影响力,而无关或冗余的特征可能会导致模型过拟合或欠拟合。此外,特征转换、标准化、归一化等预处理方式也会影响模型性能。

3. 模型参数调优:XGBoost模型本身包含许多可调节的参数,如学习率、树的深度、子采样比例、正则化强度等。恰当的选择和优化这些参数组合,可以极大提升模型的预测性能。

4. 数据集的代表性与均衡性:如果训练数据集不能充分代表实际患者群体,或者心脏病患者与非患者的比例严重失衡,都可能导致模型预测偏倚。因此,选用具有足够多样性和均衡性的数据集对模型训练至关重要。

5. 模型复杂度与过拟合控制:过于复杂的模型容易过拟合训练数据,无法很好地泛化到未见过的测试数据上。合理控制模型复杂度,利用正则化、剪枝等技术,能够在追求模型预测性能的同时,保障其在新样本上的良好表现。

6. 评估指标与目标设定:不同的评估指标侧重于模型性能的不同方面,如AUC、精确率、召回率等。选择适合心脏病预测任务的目标和指标,有助于更加准确地评估模型的实际效果。

通过深入探讨以上影响因素,我们可以有针对性地优化模型训练过程,以期在心脏病预测中实现更高的准确性和稳定性。同时,这也提示我们在实际应用中需密切关注数据质量和模型适应性,确保模型在复杂多变的临床环境中发挥应有的作用。

5.3未来可能的优化方向和策略

在未来基于XGBoost分类器的心脏病预测模型的优化方向和策略上,可以从以下几个方面进行深入研究与改进:

1. 深度融合与集成学习:将XGBoost与其他深度学习模型(如卷积神经网络、循环神经网络)进行深度融合或采用多模态学习,构建混合模型,结合深度学习对复杂非线性关系的捕获能力和XGBoost的高效梯度提升特性,提高预测性能。

2. 动态学习与自适应更新:随着新的医疗数据不断积累,模型应具备自我学习和更新的能力,实时优化模型参数,以适应疾病风险特征随时间推移和社会环境变化的实际情况。

3. 特征提取与生成:探索新颖的特征工程技术,如利用图神经网络挖掘病患间的关系特征,或通过深度学习自动提取高级抽象特征,提升模型对心脏病复杂风险因素的理解和表达能力。

4. 模型解释性增强:虽然XGBoost已经提供了特征重要性分析,但仍需继续努力提高模型的可解释性,如采用SHAP值或其他解释性工具,让医生和研究人员更好地理解模型做出预测的原因,进而提升模型在临床实践中的可信度和接受度。

5. 隐私保护与安全计算:在医疗数据共享和模型训练过程中,重视隐私保护,探索利用联邦学习、差分隐私等技术,在保护病人隐私的前提下提高模型训练效果。

6. 定制化模型与个性化预测:根据不同年龄、性别、种族、遗传背景等个体差异,研究如何构建定制化的预测模型,提供更为精准的个体化心脏病风险评估。

7. 多任务学习与联合预测:考虑到心脏病与其他慢性疾病的关联性,可以尝试利用多任务学习的方法,同时预测多种疾病风险,提高模型的泛化能力和临床应用价值。

通过上述优化方向和策略的研究与实施,我们有望构建出更为精确、可靠且实用的心脏病预测模型,为心脏病的预防和早期干预提供强有力的支持。

6结论

未来对于XGBoost分类器在心脏病预测领域的优化工作主要围绕着提升预测精度、强化模型泛化能力、增加模型可解释性以及确保数据隐私安全四大核心要素展开。首先,通过深度学习与传统机器学习方法的融合集成,能够有效挖掘隐藏在大量医疗数据背后的深层次规律,并捕捉到心脏病复杂的发病机理,从而显著提高预测准确性。

随着医疗健康数据的持续增长与更新迭代,模型需要具备动态学习和自适应调整的能力,以及时响应各类风险因素的变化趋势,实现心脏病风险预测的实时性和前瞻性。

通过对特征工程的创新及深度学习的应用,有助于提炼更具诊断价值的高阶特征,不仅提高了模型的表现力,而且通过引入诸如SHAP等可解释性工具增强了模型透明度,便于医生和患者理解预测结果背后的关键变量,提升了模型在实际医疗场景中的信任度与采纳率。

在大数据时代背景下,隐私保护成为医疗人工智能发展的重要议题,采取联邦学习、差分隐私等手段,在保障患者信息安全的同时,实现跨机构、大规模数据驱动下的高效模型训练。

针对个体差异显著的特点,研究个性化的预测模型和多任务联合预测策略,能够更精细地评估不同人群的心脏病风险,促进个性化医疗的发展,进一步推动心脏病防治工作的精准化与高效化。

综上所述,这些优化方向和策略不仅为提升心脏病预测模型的有效性和实用性奠定了坚实基础,也体现了人工智能在医疗服务领域深化应用和持续创新的重要性。通过不断的技术迭代和完善,我们有理由相信未来的预测模型将在心血管疾病防控体系中发挥更加关键的作用。

参考文献

  1. 肖蕾,欧洋,陈智慧,等.基于中医特色诊法构建冠状动脉粥样硬化性心脏病辅助诊断预测模型的研究构想[J].中华中医药杂志,2023,38(12):5899-5903.
  2. 程祉元,张博良,蔡雨晨,等.融合随机森林与SHAP的心脏病预测及其特征分析研究[J].智能计算机与应用,2023,13(11):172-179.
  3. 刘云龙,周怡君,罗晨.基于GBM的特征选择在心脏病预测中的研究[J].现代电子技术,2023,46(19):101-106.DOI:10.16652/j.issn.1004-373x.2023.19.019.
  4. 刘海亮,陈坚豪,何雅琳,等.GA-BP神经网络在心脏病预测中的应用研究[J].微型电脑应用,2023,39(07):6-9.
  5. 梁靖涵,许亚杰.基于机器学习算法的心脏病预测诊断模型研究[J].现代信息科技,2022,6(19):67-70.DOI:10.19850/j.cnki.2096-4706.2022.19.017.
  6. 韩刚,卢鹏飞,陈珊黎,等.基于PSO-RF的冠状动脉粥样硬化性心脏病预测模型研究[J].中国数字医学,2022,17(04):56-61.DOI:10.3969/j.issn.1673-7571.2022.4.010.
  7. 秦超超.基于Catboost模型的心脏病预测研究[D].山东省:曲阜师范大学,2022.DOI:10.27267/d.cnki.gqfsu.2022.001453.
  8. 徐晨华,叶思超,丰云杰,等.基于SVM+XGBoost集成分类器的inter-patient心律失常心电信号分类[J].国际生物医学工程杂志,2020,43(05):366-371+375.DOI:10.3760/cma.j.cn121382-20200520-00505.
  9. 唐静.基于XGBoost的SRD功率变换器故障定位研究[J].成都工业学院学报,2023,26(05):43-48.DOI:10.13542/j.cnki.51-1747/tn.2023.05.008.
  10. 李聪,孔令聪,胡联亭,等.基于光学相干断层扫描血管成像技术智能预测先天性心脏病围术期转归的临床研究[J].实用医学杂志,2022,38(09):1136-1140.DOI:10.3969/j.issn.1006-5725.2022.09.017.
  11. Sarkar, Bikash Kanti.Hybrid model for prediction of heart disease[J].SOFT COMPUTING,2020,24(03):1903-1925.DOI:10.1007/s00500-019-04022-2.
  12. Mishra J.S.,Meqdad M.N.,Sharma A., et al.Evaluating the Effectiveness of Heart Disease Prediction[J].International Journal of Intelligent Systems and Applications in Engineering,2024,12(5s):163-173.
  13. Mohammad, Farah,Al-Ahmadi, Saad.WT-CNN: A Hybrid Machine Learning Model for Heart Disease Prediction[J].MATHEMATICS,2023,11(22).DOI:10.3390/math11224681.
  14. 孙铁铮,于泽灏.基于机器学习的心脏病例分类预测研究[J].电脑知识与技术,2021,17(26):96-97+104.
  15. 黄嵩,张云华.基于KPCA-LightGBM的心脏病预测研究[J].软件导刊,2021,20(09):39-43.DOI:10.11907/rjdk.202407.

致    谢

衷心感谢所有为本篇基于XGBoost分类器的心脏病预测研究论文付出努力和智慧的人士。首先,我要深深感谢我的导师,他/她的悉心指导和无私奉献,使我得以在研究过程中不断深入,从理论到实践都有了长足的进步。同时,也要感谢课题组全体成员的通力合作与热烈讨论,正是大家的共同努力才促成了这项研究的成功完成。

我还要特别感激为本研究提供宝贵医疗数据的医疗机构和广大患者,没有他们的支持与配合,我们无法获取如此丰富且珍贵的数据资源。在此,我对参与此项研究的所有医护人员和技术人员表示深深的谢意。

此外,非常感谢那些在研究过程中给予我专业建议和帮助的同行专家们,他们的洞见和批评对我完善研究内容起到了关键作用。同时,国家和学校的科研基金支持为本研究提供了坚实的物质基础,对此表示诚挚的感谢。

最后,感谢家人和朋友们在我整个研究过程中的关心和支持,他们的理解和鼓励是我勇往直前的动力源泉。愿这份研究成果能为心脏病预测与防治工作带来积极的影响,回馈社会各界的关爱与期待。

作者:       

2024年6月1日

附录3 查重报告

  • 24
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
KNN(K-Nearest Neighbors)是一种机器学习算法,可用于心脏病分类预测。KNN算法通过度量新样本与已知类别样本之间的距离来确定新样本的类别。 基于KNN进行心脏病分类预测的过程如下:首先,收集样本数据集,其中包含已知类别的心脏病患者和正常人的特征信息,例如年龄、性别、胆固醇水平等。然后,对于将要预测的新样本,计算它与已知类别样本之间的距离。一般情况下,可以使用欧几里得距离或曼哈顿距离等进行距离度量。接下来,选择K个最近的已知类别样本,即距离新样本最近的K个样本。 对于选定的K个最近邻样本,通过多数投票的方式确定新样本的类别。如果K个最近邻中心脏病患者的数量较多,则将新样本分类心脏病。反之,如果正常人的数量较多,则将新样本分类为正常。在确定K值时,可以通过交叉验证等方法选择最优的K值。 基于KNN的心脏病分类预测具有一定的优点和限制。优点是简单易实现,不需要对样本分布进行假设,能够处理多分类问题。限制则是计算复杂度较高,对异常值和噪声敏感,对样本不平衡问题处理较为困难。 总之,基于KNN的心脏病分类预测通过计算新样本与已知类别样本之间的距离,利用多数投票方法确定新样本的类别。运用KNN算法可以进行心脏病预测,但在实际使用中需要注意其限制并进行适当的处理。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值