【图像分类】基于PyTorch搭建GRU实现MNIST手写数字体识别(单/双向GRU,附完整代码和数据集)

本文介绍了如何使用PyTorch搭建单向和双向GRU网络进行MNIST手写数字识别,对比了GRU与LSTM的结构差异,并提供了完整的代码和数据集。实验结果显示,单向和双向GRU模型的识别精度均超过98%。
摘要由CSDN通过智能技术生成

写在前面:
首先感谢兄弟们的关注和订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。
(专栏订阅用户订阅专栏后免费提供数据集和源码一份,超级VIP用户不在服务范围之内,不想订阅专栏的兄弟们可以私信我详聊)

https://blog.csdn.net/AugustMe/article/details/128969138文章中,我们使用了基于PyTorch搭建LSTM实现MNIST手写数字体识别,LSTM是单向的;
https://blog.csdn.net/AugustMe/article/details/129011083文章中,我们使用了基于PyTorch搭建LSTM实现MNIST手写数字体识别,LSTM是双向的;
现在我们基于PyTorch搭建单向和双向GRU网络用于MNIST手写数字体识别,请注意查看GRU网络代码和LSTM网络代码的区别。

1.导入依赖库

导入torch用于构建GRU网络,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器不学习我学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值