【目标检测】基于yolov5的火灾烟雾检测和识别(附代码和数据集)

写在前面:
首先感谢兄弟们的关注和订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。
(专栏订阅用户订阅专栏后免费提供数据集和源码一份,超级VIP用户不在服务范围之内,不想订阅专栏的兄弟们可以私信我详聊)

“路虽远,行则将至;事虽难,做则必成。只要有愚公移山的志气、滴水穿石的毅力,脚踏实地,埋头苦干,积跬步以至千里,就一定能够把宏伟目标变为美好现实。”

文末附项目代码和数据集,请看检测效果:

在这里插入图片描述

1. 介绍

火灾烟雾检测和识别是指通过计算机视觉技术,对火灾现场的图像或视频进行分析,检测和识别是否存在烟雾和火灾等异常情况。该技术可以帮助及时发现火灾,并且可以避免人为巡检盲区和风险,提高火灾事故的预防和应对能力。火灾烟雾检测和识别的主要流程包括以下几个步骤:

  • 图像采集:使用摄像头等设备采集火灾现场的图像或视频。<
### YOLOv5火灾、火焰烟雾检测数据集 对于YOLOv5模型的训练,可以考虑以下几个公开可用的数据集来完成火灾、火焰或烟雾检测的任务: #### 1. **Fire-Smoke Dataset** 这是一个广泛使用的数据集,包含了火灾场景中的火焰烟雾图像。该数据集中标注了不同环境下的火焰烟雾样本,适合用于YOLOv5目标检测任务[^2]。 - 数据集链接: [https://github.com/muratcanbilge/fire-smoke-dataset](https://github.com/muratcanbilge/fire-smoke-dataset) - 特点: 提供了清晰的标签文件以及详细的说明文档。 #### 2. **FSSD (Flame and Smoke Segmentation Dataset)** 此数据集专注于火焰烟雾分割任务,同时也提供了边界框标注,可以直接应用于目标检测框架如YOLOv5。它涵盖了多种复杂背景条件下的火灾场景[^3]。 - 数据集链接: [http://www.vision.ee.ethz.ch/~cvlsegmentation/fssd/](http://www.vision.ee.ethz.ch/~cvlsegmentation/fssd/) - 特点: 高分辨率图片,多样化的拍摄角度光照条件。 #### 3. **UCSD Fire Detection Dataset** 这是由加州大学圣地亚哥分校发布的一个小型但高质量的火灾视频帧数据集。虽然规模较小,但它非常适合用来验证模型性能或者作为迁移学习的基础[^4]。 - 数据集链接: [https://www.crcv.ucf.edu/data/FireDataset.html](https://www.crcv.ucf.edu/data/FireDataset.html) - 特点: 主要针对监控摄像头捕捉到的真实世界火情事件。 #### 4. **Custom Data Preparation with LabelImg Tool** 如果上述现成的数据集无法满足特定需求,则可以通过工具自行创建自定义数据集。推荐使用`LabelImg`标记软件对收集来的图片进行手动标注,并按照YOLO格式导出相应的`.txt`标签文件[^5]。 ```bash pip install labelimg labelimg ``` --- ### 示例配置文件 (`custom_dataset.yaml`) 以下是为YOLOv5设计的一份简单的yaml配置模板,假设已准备好自己的数据集并存放在指定目录中: ```yaml train: ./datasets/custom/train/images/ val: ./datasets/custom/valid/images/ nc: 2 # 类别数量(例如:火焰 烟雾) names: ['fire', 'smoke'] # 对应类别名称列表 ``` 注意替换路径为你实际存储的位置即可。 --- ### 注意事项 在下载任何外部资源之前,请务必确认其许可协议允许商业用途或其他预期应用范围;另外还需确保所选数据的质量能够代表最终部署环境中可能遇到的各种情况。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器不学习我学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值