【模型参数优化】网格搜索对XGBoost分类模型进行参数寻优【附python实现代码】

写在前面:
首先感谢兄弟们的订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。

路虽远,行则将至;事虽难,做则必成。只要有愚公移山的志气、滴水穿石的毅力,脚踏实地,埋头苦干,积跬步以至千里,就一定能够把宏伟目标变为美好现实。

历史文章回顾:

灰狼优化算法:【智能优化算法】灰狼优化算法【附python实现代码】
白鲸优化算法:【智能优化算法】白鲸优化算法【附python实现代码】
【智能优化算法】粒子群优化KNN分类算法【附python实现代码】
【智能优化算法】粒子群优化随机森林分类算法【附python实现代码】
【智能优化算法】粒子群优化LightGBM分类算法【附python实现代码】
【模型参数优化】随机搜索对随机森林分类模型进行参数寻优【附python实现代码】
【模型参数优化】网格搜索对随机森林分类模型进行参数寻优【附python实现代码】
【模型参数优化】网格搜索对KNN分类模型进行参数寻优【附python实现代码】
【模型参数优化】网格搜索对lightGBM分类模型进行参数寻优【附python实现代码】
在这里插入图片描述

1、介绍

网格搜索是一种在多个维度上搜索最优解的方法,主要用于解决多变量问题,特别是寻找极值(包括极小值和极大值)。以下是网格搜索在不同领域的应用和定义:

  • 化学领域:网格搜索被定义为在寻找多变量问题的所有极值中,以固定增量改变每个变量的搜索极值的方法。
    信息技术领域:网格搜索通过建立跨越Web的信息分布和集成应用程序逻辑,利用现有的网络基础设施、协议规范、Web和数据库技术,为用户提供一体化的智能信息平台。这个平台的目标是创建一种基于Internet的新一代信息平台和软件基础设施,实现全面的信息资源共享。
  • 机器学习和模式识别领域:网格搜索算法是一种数学方法,用于确定最优参数组合以实现最佳性能。这种方法的核心思想是通过枚举某个空间中的所有可能解,并以某种评价准则度量各种解,从而寻求最佳解。通常,可以使用函数的参数空间组成一个网格,并在每个网格点处测试样本,然后根据测试得出的性能结果进行比较,最终确定最有效的参数组合。
  • 模型超参数优化:网格搜索也是一项模型超参数优化技术,常用于优化三个或更少数量的超参数。对于每个超参数,使用者选择一个较小的有限集去探索,然后这些超参数的笛卡尔乘积得到若干组超参数。网格搜索使用每组超参数训练模型,并挑选验证集误差最小的超参数作为最好的超参数。

总的来说,网格搜索是一种强大的工具,可以在多个维度上搜索最优解,适用于各种领域和问题。
【From 大模型】

2、实战代码

使用网格搜索对XGBoost分类模型进行参数寻优:

# -*- coding: utf-8 -*-
"""
Created on Fri May  3 21:55:32 2024

@author: 63454

https://zhuanlan.zhihu.com/p/647588686
"""


from sklearn.model_selection import GridSearchCV  
from xgboost import XGBClassifier
from sklearn.datasets import load_wine  
from sklearn.model_selection import train_test_split  
from sklearn.metrics import accuracy_score
import time

  
# 加载数据集  
wine = load_wine()  
X = wine.data  
y = wine.target  
  
# 划分训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=10)  

print("---------------------使用默认参数----------------------------")
model = XGBClassifier()
# 训练
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print("默认参数 accuracy:", acc)
  
print("---------------------参数寻优----------------------------")
t1 = time.time()
# 定义参数网格  
param_grid = {  
    'learning_rate': [0.05,0.06,0.07,0.08,0.09,0.1], # [500, 600, 700, 800]   
    'n_estimators': [500, 600, 700, 800], # [500, 600, 700, 800]    range(100, 500)
    'max_depth': range(2,8)
}  
  

model = XGBClassifier()  
# 初始化网格搜索对象  
grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=5, scoring='accuracy', verbose=2)  
# 执行网格搜索  
grid_search.fit(X_train, y_train)  
t2 = time.time()
# 输出最优参数  
print("Best parameters:")  
print()  
print(grid_search.best_params_)
print("time:", t2-t1)

print("---------------------最优模型----------------------------")
model_best_params = grid_search.best_params_
model = grid_search.best_estimator_
# 训练
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print("最优参数 accuracy:", acc)

终端输出:

---------------------使用默认参数----------------------------
默认参数 accuracy: 0.8611111111111112

[CV] END ...learning_rate=0.1, max_depth=7, n_estimators=600; total time=   1.1s
[CV] END ...learning_rate=0.1, max_depth=7, n_estimators=600; total time=   1.1s
[CV] END ...learning_rate=0.1, max_depth=7, n_estimators=700; total time=   1.3s
[CV] END ...learning_rate=0.1, max_depth=7, n_estimators=700; total time=   1.1s
[CV] END ...learning_rate=0.1, max_depth=7, n_estimators=700; total time=   1.1s
[CV] END ...learning_rate=0.1, max_depth=7, n_estimators=700; total time=   1.1s
[CV] END ...learning_rate=0.1, max_depth=7, n_estimators=700; total time=   1.1s
[CV] END ...learning_rate=0.1, max_depth=7, n_estimators=800; total time=   1.4s
[CV] END ...learning_rate=0.1, max_depth=7, n_estimators=800; total time=   1.4s
[CV] END ...learning_rate=0.1, max_depth=7, n_estimators=800; total time=   1.4s
[CV] END ...learning_rate=0.1, max_depth=7, n_estimators=800; total time=   1.4s
[CV] END ...learning_rate=0.1, max_depth=7, n_estimators=800; total time=   1.2s
Best parameters:

{'learning_rate': 0.05, 'max_depth': 2, 'n_estimators': 500}
time: 231.58508110046387
---------------------最优模型----------------------------
最优参数 accuracy: 0.9166666666666666

没有参数优化前,模型精度86.11%,参数优化后91.67%

3、总结

网格搜索(Grid Search)作为一种参数寻优技术,具有其独特的优点和缺点。

优点:

全面搜索:网格搜索是一种全面的搜索策略,能够穷尽所有参数的所有可能组合。这种策略可以确保在设定的参数范围内,找到最优的参数组合,从而达到最佳的效果,避免陷入局部最优解。
直观易懂:网格搜索的方法简单直接,易于理解和实现。它通过遍历所有可能的参数组合来找到最优的超参数集,对于初学者来说,是一种非常直观的超参数调优方法。
适用于参数量较少的情况:在所需设置的参数数目即参数维数较少的情况下,网格搜索算法的运算复杂度往往比较低,同时可以节省时间成本。此外,网格搜索算法可以并行计算,每组参数组合之间是相互独立没有相关联系的,因此可以在一定范围的区间内,从初始位置同时向多个方向出发搜索。

缺点:

计算成本高:网格搜索的主要缺点是计算成本非常高,尤其是当超参数空间很大或者模型训练时间很长时。因为需要尝试大量的参数组合,这会导致搜索时间过长,甚至在某些情况下变得不实际。
可能错过最优参数:网格搜索只能在有限的、预设的参数组合中进行搜索,因此可能会错过最优参数。如果预设的参数空间区域小,或者参数的取值范围设置不当,就有可能导致搜索不到最佳的参数值。
不适用于大规模数据集:对于中等或大规模数据量的搜索问题,网格搜索需要遍历所有参数的所有可能性,这会耗费过多的时间成本,搜索代价高昂。在大多数的设备中,对于几万个待寻优参数,每个参数有数千个候选值的情况,预计需要几天的时间来搜索最佳的参数组合。
因此,在选择是否使用网格搜索进行参数寻优时,需要根据实际问题的特点和需求进行权衡和选择。对于参数空间较小、计算资源充足的情况,网格搜索是一个不错的选择。然而,对于参数空间较大或计算资源有限的情况,可能需要考虑其他更为高效的参数寻优方法,如随机搜索(Random Search)等。

参考:
https://blog.csdn.net/qq_41076797/article/details/102755904
https://zhuanlan.zhihu.com/p/647588686

  • 29
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 好的,以下是使用XGBoost训练一个二分类模型代码示例,注释中标注了需要调整的参数。 ```python import xgboost as xgb from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 加载数据 data, target = load_breast_cancer(return_X_y=True) # 划分数据集 X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.3, random_state=42) # 定义模型参数 params = { 'objective': 'binary:logistic', # 目标函数 'eval_metric': 'logloss', # 评价指标 'eta': 0.3, # 学习率 'max_depth': 3, # 树的最大深度 'min_child_weight': 1, # 叶子节点最小权重 'gamma': 0, # 控制是否后剪枝的参数 'subsample': 1, # 随机采样训练数据 'colsample_bytree': 1, # 控制树的每个叶子节点的最小样本数 'scale_pos_weight': 1, # 控制正负样本不平衡问题的参数 'n_jobs': -1, # 并行处理的线程数 'random_state': 42 # 随机数种子 } # 转换数据格式 dtrain = xgb.DMatrix(X_train, label=y_train) dtest = xgb.DMatrix(X_test, label=y_test) # 训练模型 num_rounds = 100 # 迭代次数 model = xgb.train(params, dtrain, num_rounds) # 预测结果 y_pred = model.predict(dtest) y_pred = [1 if x > 0.5 else 0 for x in y_pred] # 评估模型 acc = accuracy_score(y_test, y_pred) print('Accuracy: %.2f%%' % (acc * 100.0)) ``` 需要调整的参数包括: - `eta`:学习率,控制每一步的步长,通常取值在 0.01 ~ 0.2 之间。 - `max_depth`:树的最大深度,控制树的复杂度,通常取值在 3 ~ 10 之间。 - `min_child_weight`:叶子节点最小权重,控制模型的泛化能力,通常取值在 1 ~ 10 之间。 - `gamma`:控制是否后剪枝的参数,通常取值在 0 ~ 1 之间。 - `subsample`:随机采样训练数据,控制模型的方差,通常取值在 0.5 ~ 1 之间。 - `colsample_bytree`:控制树的每个叶子节点的最小样本数,控制模型的方差,通常取值在 0.5 ~ 1 之间。 - `scale_pos_weight`:控制正负样本不平衡问题的参数,通常取值为负样本数 / 正样本数。 - `n_jobs`:并行处理的线程数,通常设置为 -1(使用全部的 CPU 核心)。 - `random_state`:随机数种子,用于结果的复现。 ### 回答2: XGBoost是一种基于梯度提升决策树的强大机器学习算法,适用于二分类问题。在使用XGBoost编写二分类模型时,需要调整的参数有以下几个。 1. 学习率(learning rate):控制每次迭代中弱学习器的权重,较小的学习率会使得模型收敛慢,但是泛化能力较强。需要根据具体问题进行调整。 2. 树的最大深度(max_depth):决策树的最大深度,控制树的复杂度,较大的深度可能导致过拟合,较小的深度可能导致欠拟合。需要通过交叉验证来选择最佳值。 3. 树的个数(n_estimators):弱学习器的个数,较大的数量可能会提高模型的性能,但是会增加计算复杂度。需要根据具体问题来进行调整。 4. 正则化参数(alpha和lambda):控制模型的复杂度,alpha是L1正则化的参数,lambda是L2正则化的参数。可以通过交叉验证来选择最佳值。 5. 子采样比例(subsample):控制每棵树使用的样本比例,较小的比例可以减少过拟合的风险。需要根据具体问题进行调整。 6. 列采样比例(colsample_bytree和colsample_bylevel):控制每棵树使用的特征比例,较小的比例可以减少过拟合的风险。可以通过交叉验证来选择最佳值。 7. 早停法参数(early_stopping_rounds):当模型在一定轮数内没有进一步改善时,可以提前停止训练,防止过拟合。需要根据具体问题进行设置。 以上是使用XGBoost编写二分类模型时需要调整的一些参数。根据具体问题和数据集的特点,选择合适的参数值可以提高模型的性能和泛化能力。 ### 回答3: 使用XGBoost进行分类模型的搭建,需要调整的参数有以下几个: 1. learning_rate(学习率):需要根据具体情况进行调整,默认值为0.3。较小的学习率可以使模型更加稳定,但需要更多的迭代次数才能收敛,较大的学习率则会导致模型过拟合。 2. max_depth(树的深度):需要根据训练样本的维度进行调整,默认值为6。较小的深度可以降低模型的复杂度,防止过拟合,但可能损失一些模型的表达能力;较大的深度可以提高模型的表达能力,但容易过拟合。 3. n_estimators(迭代次数):需要根据具体问题进行调整,默认值为100。迭代次数过少可能导致模型欠拟合,迭代次数过多则可能导致模型过拟合。 4. subsample(抽样比例):需要根据样本数量进行调整,默认值为1(使用全部样本)。较小的抽样比例可以减少模型的方差,防止过拟合,但可能增加模型的偏差;较大的抽样比例可以减小模型的偏差,但可能增加方差。 5. colsample_bytree(每棵树的特征抽取比例):需要根据特征数量进行调整,默认值为1(使用全部特征)。较小的特征抽取比例可以减少模型的方差,防止过拟合,但可能增加模型的偏差;较大的特征抽取比例可以减小模型的偏差,但可能增加方差。 除了以上参数外,还可以调整正则化参数(lambda 和 alpha)以控制模型的复杂度和稳定性。此外,还可以尝试使用early_stopping_rounds参数进行早停策略,以避免过拟合。 在使用XGBoost进行模型调参时,可以通过网格搜索、随机搜索等方法来找到最优的参数组合。需要注意的是,调参过程可能会耗费较多的时间和计算资源,需要根据实际情况进行合理的调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器不学习我学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值