数据挖掘:模型状态评估

本文探讨了数据挖掘中模型状态的评估,包括过拟合和欠拟合的概念。模型状态分为过拟合(训练集效果好,测试集效果差)和欠拟合(训练集和测试集效果都不佳)。偏差表示模型预测与真实结果的偏离,方差则衡量模型在不同数据集上的变化。学习曲线用于展示随着样本量增加,模型的偏差和方差变化,帮助我们平衡模型的准确性和稳定性。过拟合表现为低偏差高方差,欠拟合则为高偏差低方差。学习曲线能揭示模型是否需要更多数据或者更复杂的结构。
摘要由CSDN通过智能技术生成

数据挖掘:模型状态评估

之前的模型评估仅仅是在评估模型的预测精度怎么样,没有考虑模型过拟合和欠拟合的状态。也就是说,模型拟合出来后,我们要对它进行优化,而如何优化就要看模型目前所处的一个状态,过拟合,欠拟合等。有针对的对模型进行优化。

一、模型状态

模型的状态可分为两类:

  1. 过拟合:模型在训练集上的效果好,在测试集上的效果差。
  2. 欠拟合:模型在训练集和测试集上的效果都不好。

在这里插入图片描述

而这个效果就是模型评估中的准确度。从准确度的反面,就是误差过大。
误差:学习器的预测输出与样本的真实输出之间的差异
根据数据集的划分,又有如下的定义:

  1. 训练误差(training error):又称为经验误差(empirical error),学习器在训练集上的误差。
  2. 测试误差(test error):学习器在测试集上的误差。
  3. 泛化误差(generalization error):学习器在未知新样本上的误差。

训练模型的意义:得到泛化误差小的学习器。然而,事先并不知道新样本,实际能做的是努力使经验误差最小化。但需要明确一点,即使分类错误率为 0,精度为 100% 的学习器,也不一定能够在新样本上取得好的预测结果。我们实际希望的是在新样本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值