机器学习与数据挖掘 之 模型评估model evalution的方法(Holdout & K-fold Cross-validation & Bootstrap)

我们选择了分类器,训练了模型,那么评价模型/分类器好坏的方法有哪些呢

 

Holdout

Reserve some data for testing

就是划分训练集和测试集

 

K-fold Cross-validation

Divide samples to 𝑘 partitions, run classifier using 𝑘 − 1 partitions and test with the remaining
one. Repeat the process for all combinations of 𝑘 − 1 partitions

 

Bootstrap

Sample n instances with replacement as the training set, use those that is not sampled as the
testing set

This could be done using the Bagging classifier (will not be covered in tutorial)
 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值