我们选择了分类器,训练了模型,那么评价模型/分类器好坏的方法有哪些呢
Holdout
Reserve some data for testing
就是划分训练集和测试集
K-fold Cross-validation
Divide samples to 𝑘 partitions, run classifier using 𝑘 − 1 partitions and test with the remaining
one. Repeat the process for all combinations of 𝑘 − 1 partitions
Bootstrap
Sample n instances with replacement as the training set, use those that is not sampled as the
testing setThis could be done using the Bagging classifier (will not be covered in tutorial)
机器学习与数据挖掘 之 模型评估model evalution的方法(Holdout & K-fold Cross-validation & Bootstrap)
最新推荐文章于 2024-01-09 01:19:12 发布