认知行为疗法(CBT)是一种完善的干预措施,通过改变不良的认知和行为模式来减轻心理问题。
随着预训练模型和大预言模型的出现,在支持、增强、优化和自动化CBT方面具有巨大潜力,这篇综述就是介绍了将人工智能融入CBT干预中的相关文献。分别将人工智能整合到CBT治疗前,治疗中和治疗后的各个阶段。
CBT的理论基础包括认知和行为两个方面,其干预主要是认知、行为和情感三个方面。
认识领域:帮助来访者识别和理解消极或扭曲的思维模式,采用认知重构(CR)技术来调整认知方面的问题。
行为领域:CBT解决个体的不良行为模式和习惯,比如社交退缩、逃避、酒精滥用等。通常采用行为实验、分级暴露和行为激活(BA)等技术
情绪领域:CBT以客户的情绪意识和管理方式为目标,帮助个体识别负面情绪,准确识别它们(因为如紧张、恐惧等情绪会影响认知和行为)
本综述是基于 CBT和技术两个要素在ARXiv和谷歌学术上进行搜索的,CBT(例如,认知行为疗法,认知扭曲,认知重构和暴露疗法)和技术(例如,人工智能、机器学习、深度学习、自然语言处理、大型语言模型、聊天机器人和虚拟现实)
摘要
认知行为疗法(CBT)是一种完善的干预措施,通过改变不良的认知和行为模式来减轻心理问题。然而,CBT的提供常常受到资源限制和获取障碍的限制。人工智能的发展为CBT的数字化转型提供了技术支持。特别是,预训练模型(PTMs)和大型语言模型(LLMs)的出现,在支持、增强、优化和自动化CBT交付方面具有巨大的潜力。本文综述了将人工智能纳入CBT干预的相关文献。我们从认知行为疗法的概述开始。然后,我们将AI整合到CBT的各个阶段:治疗前、治疗过程和治疗后。接下来,我们总结了一些与cbt相关的任务的相关数据集。最后,我们讨论了将人工智能应用于CBT的好处和当前的局限性。我们提出了未来研究的关键领域,强调需要进一步探索和验证人工智能增强CBT的长期疗效和临床应用。人工智能在重塑CBT实践方面的变革潜力预示着一个更容易获得、更有效、更个性化的心理健康干预的新时代。
1 介绍
心理健康问题变得越来越普遍,特别是在大流行后时代,Penninx等人(2022)。COVID-19带来的心理困扰加剧了现有的心理健康危机,导致抑郁、焦虑和自杀意念的比例更高。因此,迫切需要有效和可获得的精神卫生干预措施。认知行为疗法(CBT)被广泛认为是解决一系列心理健康问题的最重要的心理干预措施之一Foreman和Pollard (2016);David et al(2018)。CBT作为治疗抑郁和焦虑的黄金标准,已被纳入全球医疗保健体系。其主要目标是识别和重建患者的适应不良认知框架,以帮助他们发展应对技能,解决行为问题,减轻症状。然而,由于CBT传统上是由治疗师单独和面对面进行的,因此在现实生活中面临障碍,包括社会耻辱和获得合格治疗师的机会有限,特别是在服务不足的地区。在接受心理治疗的患者中,只有27%的人真正获得了标准化的护理。为了应对这些挑战,技术进步导致了基于计算机的认知行为疗法(CCBT)和基于互联网的认知行为疗法(ICBT)的发展,Webb等人(2017)。这些变体使用计算机软件和互联网作为媒介,提供基于既定理论和技术的认知行为治疗干预。澳大利亚国立大学MoodGYM(2024)、30天自助心理专家中国认知行为治疗专业组织(2024)等已建立的在线CBT平台已经出现。这些在线平台部分缓解了与精神卫生专业人员短缺和可及性差有关的一些问题,Christ等人(2020)。然而,他们仍然面临着挑战,如有限的互动性和高辍学率。此外,他们提供的干预措施只针对一般的认知问题,而不是针对个人的具体需求。鉴于这一挑战,迫切需要更灵活和适应性的CBT形式,以更好地满足不同患者群体的多样化需求。
近年来,人工智能(AI)技术的快速发展促使各行各业探索其创新应用。人工智能在数据分析、模式识别和自动化方面的卓越能力为心理健康服务的提供提供了巨大的潜力,为心理健康状况的评估、诊断和治疗提供了新的工具和方法,Lee等人(2021);Malgaroli et al . (2023);Demszky等人(2023a)。例如,深度学习(DL)模型可以自动化心理健康评估和诊断过程,减轻专业人员的工作量,同时提高诊断的准确性和效率(Vuyyuru等人,2023)。此外,人工智能还可以帮助检测和理解患者独特的情绪表达,从而为个性化的心理干预提供建议和支持(Assun ~ ao等人,2022)。鉴于缺乏熟练的精神卫生专业人员,已经开发了创新的人工智能方法来指导点对点精神卫生支持(Sharma等人,2023a)。此外,基于人工智能的心理咨询支持系统,如利用大型语言模型(llm)的系统,也被开发出来,以协助初级咨询师提供在线心理支持(Fu et al ., 2023)。这些研究表明,人工智能不仅扩大了传统精神卫生服务的边界,而且为全球改善其可及性和效用带来了新的机会(Graham et al . (2019));Demszky et al . (2023b)。在CBT领域,人工智能的整合带来了革命性的进步,尤其是随着大语言模型的兴起。该领域值得注意的研究包括CBT特定提示和定制数据集的开发,从而产生了CBT- llm等专门为CBT交付设计的模型Na(2024)。其他的努力也产生了基于大语言模型的会话咨询代理,例如利用CBT中的GPT-2生成类似人类的文本叙事来提供心理支持Rajagopal等人(2021),使用CBT技术提供心理咨询Lee等人(2024),以及使用OsakaED和GPT-4 Izumi等人(2024)等大语言模型提供侧重于苏格拉底问题的对话模块。这些进步使认知行为干预更加个性化和精确,更好地满足不同患者的需求。
鉴于这一领域的大量研究,一些综述文章总结了CBT的创新发展。然而,现有的评论主要集中在CBT的应用Huguet et al (2016);Denecke et al .(2022)和ChatGPT在重新设计不同年龄组和性别的CBT中的发展Chandra et al .(2023)。目前缺乏对人工智能在CBT实施的各个阶段的应用的综合综述。为了解决这个问题,我们在本文中提供了人工智能在增强CBT中的作用的详细文献综述。
2 背景
认知行为疗法(CBT)是一种结构化的、有时间限制的心理治疗,专注于认知过程、情绪反应和行为模式之间的相互作用。这种治疗方法的前提是思想、情绪和行为是相互关联的,旨在通过解决适应不良的认知模式和行为来增强心理健康。CBT的理论基础包括认知和行为两个方面。关于CBT的起源,学术界有不同的看法。然而,人们普遍认为,“认知”的普及始于20世纪50年代埃利斯的理性情绪疗法(RET),随后是60年代贝克的认知疗法(CT)。从那时起,CBT不断整合各种行为疗法和理论,发展成为今天广泛使用的心理治疗。
CBT干预通常针对三个领域:认知、行为和情感。在认知领域,CBT关注个体的认知过程,包括思想、信仰和解释。这包括帮助来访者识别和理解消极或扭曲的思维模式,如消极的自动思维和认知扭曲(CD)(例如,直接下结论,全有或全无的思维和心理过滤)。像认知重组(CR)这样的技术被用来调整这些模式,培养对自己和世界更客观和积极的看法。在行为领域,CBT解决个体的不良行为模式和习惯。治疗师与来访者合作,探讨他们的不健康行为,如社交退缩、逃避、物质或酒精滥用。然后采用行为实验、分级暴露和行为激活(BA)等技术。此外,认知行为疗法承认身体和精神之间的相互作用。紧张、恐惧和焦虑等生理反应会影响认知和行为。因此,CBT还侧重于通过深呼吸、渐进式肌肉放松和身体活动等技术来调节生理反应,以增强情绪调节和心理健康。在情绪领域,CBT以客户的情绪意识和管理方式为目标,帮助客户识别负面情绪,准确识别它们,并利用适当的认知和行为策略来支持更好的情绪健康。这三个领域是相互交织的,CBT通常根据个人的具体情况和需求量身定制一系列技术和策略,帮助解决问题,改善心理健康,建立弹性(Dobson和Dozois, 2021)。
CBT已被用于解决各种心理健康问题,包括焦虑症Olatunji等人(2010)、抑郁症Tymofiyeva等人(2019)、精神分裂症Turkington等人(2004)、注意力缺陷和多动障碍Pan等人(2019)、失眠症Benard和Lukandu(2018)、饮食失调Linardon等人(2017)、双相情感障碍Driessen和Hollon(2010)、物质使用障碍McHugh等人(2010)和强迫症Moody等人(2017)。除了心理健康之外,CBT还被用作治疗腰痛等慢性健康状况的工具。Piette等人(2016);Heapy等人(2017),asthma Parry等人(2012),耳鸣Parry等人(2012)。在开始CBT之前,治疗师通常会进行评估,以确定症状的严重程度和治疗目标。这些评估可能包括治疗师和来访者之间的对话或自我管理的工具,如贝克抑郁量表(BDI-II)或贝克焦虑量表(BAI)。Beck et al (1988);Foa等人(1993)。在此评估的基础上,治疗师与客户一起建立治疗目标,并根据他们的需求提供个性化的认知和行为策略。
3 CBT中的人工智能
将人工智能整合到CBT中呈现出无数潜在的应用,有望提高治疗的有效性和实用性。为了总结现有的关于在整个交付过程中将人工智能整合到CBT中的文献,我们在没有日期限制的情况下,通过在ArXiv和Google Scholar数据库中进行搜索,进行了文献综述。本综述中考虑的搜索词是基于两个要素选择的,CBT(例如,认知行为疗法,认知扭曲,认知重构和暴露疗法)和技术(例如,人工智能、机器学习、深度学习、自然语言处理、大型语言模型、聊天机器人和虚拟现实)。将选择通过人工智能技术增强、支持或实施CBT的文章。结果根据人工智能融入CBT交付过程的阶段进行分类,并进行综合。在本节中,我们提出了描述人工智能在CBT治疗过程不同阶段中的作用的综合研究结果,如图1所示。
需要明确的是,本文仅涵盖当前AI技术已经解决的CBT阶段。由于CBT治疗的复杂性,AI还没有涉及到一些细节和具体的治疗阶段,因此不在这里讨论。未来的研究和技术进步可能会进一步扩大人工智能在CBT治疗中的作用,包括治疗过程的更多阶段。
3.1 在预处理阶段集成AI
全面评估是包括CBT在内的所有心理治疗的基础步骤。初步评估包括通过结构化或半结构化访谈、问卷调查和标准化量表收集来访者的病史、当前问题和治疗目标等信息。在CBT中,特别强调评估来访者的认知和行为模式,以及他们的情绪反应。从详细的评估中得出的见解指导治疗师制定量身定制的CBT治疗计划,有效地解决客户的担忧,从而最大化治疗效果。传统的CBT评估方法虽然彻底,但往往严重依赖人工过程,这可能是主观的和耗时的。依赖治疗师的临床技能和专业敏锐度也可能限制诊断的准确性和治疗效率。相比之下,具有先进数据处理和分析能力的人工智能技术提供了一个强大的替代方案。人工智能可以快速分析大量客户数据,以识别模式和相关性,从而帮助治疗师更准确、更迅速地评估患者症状,并识别不良情绪和认知扭曲。
3.1.1 心理健康评估
a.疾病诊断及症状严重程度评估
人工智能越来越多地用于诊断和评估常见的精神疾病,如抑郁症和焦虑症。Wanderley Espinola等人(2022)提出了一种方法,支持在精神紧急情况下使用声乐分析和机器学习来诊断精神障碍,针对重度抑郁症、精神分裂症、双相情感障碍和广泛性焦虑症等疾病。Siddiqua et al(2023)采用在孟加拉国学生中分发的调查问卷,共获得684份回复,并利用10个机器学习模型和2个深度学习模型预测抑郁严重程度(正常、中度和极端)的三个级别,准确率很高。Vuyyuru等人(2023)引入了Trans-CNN,它有效地整合了Transformer和Convolutional Neural Network (CNN)架构的优势。与传统的CBT方法和独立的Transformer或CNN模型相比,该模型通过分析患者叙述、治疗记录和诊断报告等文本数据,在识别抑郁症方面表现出优越的性能。尽管取得了这些进步,但现有的研究主要集中在专注于单一心理障碍诊断和评估的人工智能模型上,很少有研究致力于开发能够同时诊断多种共同发生的心理疾病的综合模型。
b.识别认知扭曲
CBT假设个体的情绪和行为受到他们对事件的感知和解释的影响。认知扭曲是指错误或非理性的思维模式,会导致负面情绪和适应不良行为。在CBT的初始评估阶段,治疗师与客户合作,探索这些认知模式和对特定事件的反应,旨在帮助来访者识别和理解潜在的认知扭曲,Burns和Beck(1999)将其分为十种类型。它们包括:要么全有要么全无的思维、过度概括、心理过滤、否定积极的东西、草率下结论、放大和最小化、情绪化推理、应该陈述、贴标签和错贴标签、责备自己或他人。
目前,人工智能技术主要通过文本分类技术促进认知扭曲的识别。研究人员利用各种文本数据作为输入,建立模型和算法,自动识别和分类这些认知扭曲。然而,由于缺乏专门用于检测认知扭曲的公开可用结构化数据集,研究人员经常转向其他数据源,如社交媒体数据Alhaj等(2022);Wang等人(2023b),个人博客Simms等人(2017),日常叙事Xing等人(2017);Shickel等(2020);Mostafa et al(2021)。Shreevastava和Foltz(2021)使用从Kaggle获得的治疗师问答数据集,比较了检测认知扭曲的五种分类算法。Tauscher等人(2023)应用NLP方法从严重精神疾病患者与其临床治疗师之间交换的短信中识别认知扭曲。该任务的挑战包括处理缺乏上下文信息的短文本和不平衡的数据,其中某些失真类型未被充分代表,从而导致较差的分类性能。为了解决这些问题,研究人员提出了各种解决方案。Alhaj等人(2022)建议丰富简短的文本表示,以改善Twitter上阿拉伯语上下文的认知扭曲分类。它还利用基于转换器的主题建模算法(BERTopic),该算法采用预训练的语言模型(AraBERT)。Ding等人(2022)通过数据增强和特定领域模型等方法解决了数据不平衡问题,证明了预训练语言模型MentalBERT的有效性。最近的进展扩大了认知扭曲检测的范围,包括多模态数据集。这种跨模态的研究方法提供了一个更全面的视角,能够更全面地检测认知扭曲。例如,Singh等人(2023)提出了一个多任务框架,该框架集成了文本、音频和视觉数据来检测认知扭曲,比现有的最先进模型实现了显著的性能改进。
最近,大语言模型在复杂的心理任务中也显示出前景,例如识别认知扭曲Qi等(2023);Nazarova (2023);Chen et al . (2023);Lim et al .(2024)。Qi等(2023)通过实验比较了llm和监督学习在认知扭曲识别和自杀风险分类方面的差异。实验结果表明,大语言模型很难准确识别中国社交媒体数据中的复杂认知扭曲,这表明深度学习算法仍然是认知扭曲识别等复杂心理任务的首选解决方案。Nazarova(2023)开发了TeaBot,这是一种对GPT-3进行微调的人工智能工具,并采用CBT技术帮助用户识别和挑战扭曲的思想。Chen等人(2023)引入了思想诊断(DoT)框架,该框架战略性地促使大语言模型产生与认知扭曲检测相关的诊断理由。尽管DoT方法在认知扭曲分类方面表现出了良好的能力,但它也存在一个明显的缺陷,即使用户的陈述是善意的,该模型也倾向于过度诊断认知扭曲。Lim等人(2024)通过引入ERD框架解决了这个问题,该框架涉及多个LLM代理之间的提取、推理和辩论,以对用户话语中的认知扭曲进行分类。这种方法显著减轻了DoT方法中过度诊断认知扭曲的问题。
c.情感分析
情绪分析对于理解个体的情绪状态至关重要。这种理解使治疗师或会话代理能够在CBT干预中提供更多的共情支持和反馈,从而加强治疗联盟并增强互动体验(Brave et al (2005));Provoost等人(2019)。此外,情绪状态还可以作为内在目标、可观察行为和治疗效果的指标。在治疗过程中,当个体能够有效地管理自己的情绪时,他们更有可能从治疗中受益。Mehta等(2021)。因此,在最初的评估阶段,治疗师探索来访者的情绪反应,并帮助他们获得更健康的情绪调节策略。人工智能辅助情绪分析在心理健康领域变得越来越普遍,Tanana等人(2021);Assun ø c ø o等人(2022);Khare et al(2023)。Provoost等人(2019)采用情感挖掘算法评估基于互联网的认知行为治疗(ICBT)期间患者写的文本中表达的整体情绪和五种特定情绪,发现算法与人类判断在评估整体情绪方面的一致性中等,而对特定情绪的一致性较低。Patel等人(2019)提出了一种智能社交治疗聊天机器人。该聊天机器人定义了几个基本的情感标签,并在这些情感标签的基础上,采用三种深度学习算法从用户聊天数据中提取情感。Koz lowski等人(2023)介绍了Terabot,这是一个会话系统,通过集成CBT技术和在神经语言模型框架中用RoBERTa代替BERT来增强情绪和情绪识别。然而,Striegl等人(2023)指出一些情绪识别方法Fitzpatrick等人(2017);Provoost等人(2019)将情绪分为离散的类别,未能准确捕捉情绪的连续性和多样性。为了解决这个问题,他们在CBT背景下提出了一个基于深度学习的维度文本情感识别系统,使用ALBERT预训练模型Lan等人(2019),对情感注释数据进行微调,用于维度得分预测。
近年来,ChatGPT作为会话人工智能的一个突出例子,在帮助个人理解和管理情绪方面显示出潜力。Rathje等人(2023)最初评估了GPT在英语和阿拉伯语文本中进行整体情感分析(积极、消极或中立)的能力。他们发现,GPT展示了有效的多语言情感分析,达到了与前几年表现最好的机器学习模型相当的性能水平。此外,他们还检测了GPT准确辨别更细微的离散情绪(如愤怒、喜悦、恐惧和悲伤)的能力。结果表明,GPT的性能和人类判断之间具有高度的一致性。Elyoseph等人(2023)也在他们的研究中强调了GPT在情感认知方面优于人类。
尽管人工智能在情感检测和理解方面具有能力,但与人类互动相比,个人可能认为人工智能驱动的支持缺乏真正的情感共鸣(Yin等人(2024))。因此,未来的研究应该专注于使人工智能的反应更像对话和人类,以解决这种感知。此外,为了确保在实际临床环境中的严谨性和实用性,需要进行人体交叉验证。
3.1.2 个性化治疗选择:识别CBT受益者
在精准医疗领域,使客户与最合适的治疗方法保持一致是一个关键和重要的目标Ozomaro等人(2013)。这包括在开始治疗之前选择一个有效的治疗计划,从而避免与无效治疗相关的风险。CBT是一种完善的心理治疗方法,用于解决心理健康问题,然而,它的有效性因经历不同心理健康状况的个体而异。这种可变性强调需要确定哪些客户可能对CBT反应良好,并评估其在治疗特定心理健康状况方面的有效性。研究人员越来越多地探索人工智能模型的潜力,以预测哪些客户可能从CBT中受益,并为每个人确定最合适的治疗方案Ball等人(2014);Reggente et al (2018);Vieira et al .(2022)。研究表明,人工智能可以分析大量的临床数据,以预测哪些患者更有可能对CBT做出积极反应。
这种能力可以帮助临床医生选择合适的CBT候选人,从而优化资源分配。例如,Reggente等人(2018)使用交叉验证的机器学习来研究功能连接模式预测治疗后个体强迫症(OCD)症状严重程度的潜力。这些发现具有重要的临床意义,特别是在个性化医学方法的发展中,旨在识别那些从强化CBT中获益最大的强迫症患者。同样,Vieira et al(2022)对以往利用机器学习预测各种诊断类别CBT治疗结果的研究进行了全面回顾和定量综合。他们得出结论,在个人层面上,预测CBT益处的准确性约为74.0%。
除了CBT,其他类型的心理干预,如心理动力治疗(PDT)和以人为本的抑郁症咨询可能同样有效。此外,并非所有患者都需要高强度CBT干预。有些人可能从低强度干预中受益。传统上,心理治疗中的试错法既耗时又昂贵,而且在找到最适合自己的治疗方法之前,患者可能会经历多次无效的治疗。这不仅延误了有效的护理,而且增加了治疗的总费用。因此,在进行治疗之前确定最适合特定个体的治疗是至关重要的。为了解决这一差距,Delgadillo和Gonzalez Salas Duhne(2020)以及Schwartz等人(2021)应用机器学习算法,根据患者的治疗前特征推荐最佳治疗方法。这种方法可以大大节省精神卫生保健的费用,使高质量的心理治疗更容易获得和负担得起。
此外,人们对CBT与药物或其他治疗方法相结合是否能提高疗效越来越感兴趣。几位研究人员已经探索了这种可能性gunlick - stoessel et al (2020);Pei et al . (2022);Stephenson等人(2023)。例如,Gunlicks-Stoessel等人(2020)发现,CBT与药物相结合与单独用药同样有效,而且更持久。此外,他们注意到药物和CBT的结合可以提高反应率,延长有效性的持续时间,特别是当对药物治疗有反应的患者使用CBT时。
这些研究强调了人工智能在改进心理治疗选择方面的潜力,并强调了个性化方法在提高治疗效果方面的重要性。
3.1.3 客户心理教育
在CBT中,来访者教育是治疗前和整个治疗过程中至关重要的一步,如图1所示。在开始治疗之前,心理教育包括介绍CBT的基本原则和技术,帮助他们理解消极情绪、思想、行为和应对策略的常见模式。在治疗过程中,心理教育体现在教来访者如何识别和评估自动思维,如何进行认知重构,如何为自动思维寻找替代解释,从而调整这些自动思维。心理教育通过传达个体可以获得和掌握解决心理问题的技能,增强了来访者的自我效能感,甚至有助于减轻症状(1998)。
心理教育可以通过各种形式进行,包括书面材料、视频、录音,以及组织专门的讲座和研讨会。移动应用程序的出现为提供心理教育和支持提供了新的途径,利用了它们的便利性和适应性。心理教育已经无缝集成到几个移动应用程序中,其中一些已经证明对治疗各种精神障碍有效,包括压力Rose等人(2013),焦虑和抑郁Harrison等人(2011),饮食失调scardi等人(2013),创伤后应激障碍Reger等人(2013)和强迫症Whiteside等人(2014)。例如,Whiteside等人(2014)开发了智能手机应用程序“梅奥诊所焦虑教练”,旨在为包括强迫症在内的焦虑症提供CBT。该应用程序包括一个心理教育模块,指导用户使用该应用程序、焦虑的概念化、各种焦虑障碍的描述、CBT的解释以及评估替代治疗形式的指导。同样,Mart´ınezMiranda等人(2019)开发了一种基于移动的具身会话代理(ECA),用于预防和检测自杀行为。ECA向用户介绍了一段心理教育视频,在视频中,一组动画图像伴随着解说员解释CBT的基本要素。用户可以随时通过应用程序的主菜单访问视频。通过移动应用程序提供心理教育的优势是不言而喻的:信息变得便携,病人可以很容易地获取。Heng(2021)将CBT整合到沉浸式游戏体验中,以帮助患有广泛性焦虑症(GAD)的个体。在这种方法中,CBT元素与游戏的叙事元素无缝地交织在一起,以一种吸引人且有趣的方式提供心理教育。
人工智能模型通过根据每个患者的理解和偏好定制模块,促进个性化心理教育。例如,Bhaumik et al(2023)引入了MindWatch,这是一个利用人工智能驱动的语言模型进行早期症状检测和个性化心理教育的系统。在心理教育模块中,他们利用亚马逊SageMaker Studio环境中的基础Llama 2模型,为有心理健康问题的个人提供量身定制的教育。许多聊天机器人也整合了心理教育模块。例如,Jang等人(2021)开发了Todaki,一种用于管理注意力缺陷多动障碍(ADHD)的聊天机器人。这个聊天机器人提供量身定制的心理教育和简短的认知行为治疗课程,使多动症患者能够获得有效管理自己病情的自助技能。同样,Su等人(2022)利用多模态信号识别和自然交互技术创造了人工智能辅助心理治疗机器人“小安”。小安监控情绪,提供以CBT为主、整合心理教育模块的简短、全面的心理治疗。
通过这些方法,将CBT原则融入各种技术平台,促进了心理教育的传播,使个人能够更好地了解和管理自己的心理健康。
3.2 人工智能在CBT治疗过程中的整合
CBT干预包括多种策略的实施,包括认知重构、行为激活、暴露疗法等。这些策略与认知、情绪和行为有着内在的联系。在CBT治疗过程中,心理治疗师根据患者的症状和需求选择合适的治疗策略,提供针对性的治疗。在3.2.1节中,我们将深入研究人工智能技术如何增强每种CBT策略。接下来,第3.2.2节将重点介绍研究人员如何开发聊天机器人来整合多种CBT策略,为用户提供全面的心理健康支持。接下来,3.2.3节介绍了现在如何使用配备AI技术的可穿戴设备或智能手机应用程序来监测CBT治疗期间患者的心理状态。最后,3.2.4节介绍了一些研究者利用AI对CBT治疗结果进行早期预测。
3.2.1 人工智能增强CBT治疗策略
a.认知重构(CR)
认知重构(CR)是认知行为疗法的一个基本组成部分,具有结构化、目标导向和协作性干预的特点。它包括患者和治疗师共同努力,通过产生更多适应性的替代认知模式来识别和纠正非理性的想法、评估和信念。从而减轻负面情绪,改善心理健康,促进更健康的行为和应对策略。在某种程度上,它被认为类似于认知重评估Shurick等人(2012);詹等人(2024)。最近的进展是利用人工智能模型有效地进行企业责任管理。这些努力的大部分旨在提供证据,证明人工智能语言模型可以有效地在应对消极情绪情况时产生重构思维,并比较不同模型在CR中的效果。例如,de Toledo Rodriguez等人(2021)通过众包平台productive收集了一个小规模的CBT数据集。他们验证了谷歌的T5转换器和BERT模型将最初的消极认知转化为更积极或更现实的选择的能力。人工评价显示,t5生成的重建与原始的人类书面回答更接近,而BERT表现出相对较低的表现,但更高的积极情绪。Maddela等人(2023)引入了PATTERNREFRAME,这是一个结合人物角色和经典无用思维模式的新数据集,将重构任务扩展到包括识别和生成与给定人物角色和无用模式相对应的思想。他们使用基于提示和微调的方法评估了各种语言模型在识别和重构这些想法方面的功效。与de Toledo Rodriguez等人(2021)和Maddela等人(2023)将CR任务定义为句子重写任务不同,Xiao等人(2024)强调客户授权,而不是依赖治疗师驱动的解决方案。他们提出,通过心理增强中的适应性语言来帮助和授权(HealMe),这是一个利用大型语言模型(llm)进行CR的模型,通过三个步骤:从理性的角度区分情况和想法,通过头脑风暴产生替代观点以减轻消极思维,并提供认可客户努力并促进积极行动的建议。
先前的研究主要集中在整体的企业责任视角,试图解决如何利用语言模型来产生企业责任。然而,Sharma等人(2023c,b)已经开始更深入地探索企业责任的各个维度,并研究人们对特定类型重组的偏好。更具体地说,Sharma等人(2023c)研究了如何重构消极思维,如何利用语言模型来促进这种重构,以及经历消极思维的个体更喜欢哪种类型的重构。他们引入了一个包含七个语言属性的框架来重建思想,并训练了一个检索增强的上下文学习模型来产生重建的思想。此外,他们在美国心理健康(MHA)网站上进行了一项随机实地研究。在另一项工作中,Sharma等人(2023b)设计并评估了基于人类语言模型交互的CR工具。该系统利用语言模型来帮助个人在CR的各个步骤中,包括识别思想中的认知陷阱,在重建消极思想时选择更可操作的、移情的或个性化的重建建议。此外,他们还证明了语言模型不仅可以用于产生重新评估,还可以帮助个人提高自己的重新评估能力。Wang等人(2024b)认为Sharma等人(2023c,b)在一代人的时间里探索了在单一属性中重构思想的增强,他们的努力在解决多个特性方面是有限的。因此,他们开发了ReframeGPT,利用GPT-3作为推理引擎来生成和迭代地改进跨各种特征的重构思想,旨在实现高质量的重构。Li等人(2024)专注于将GPT-4的重建思维与人类的表现结合起来,通过理解人类和人工智能生成的重建之间的差异,提高模型在CR任务中的表现。
识别患者的自动思维和情绪对于有效的认知行为治疗至关重要。在传统的面对面认知行为治疗课程中,治疗师通过苏格拉底式提问等方法来完善识别的自动思维。然而,当在ICBT中传递CR时,准确捕捉思想和情感是一个挑战。因此,Furukawa等人(2023)训练T5模型来预测与每个自动思维相关的情绪。然后,他们将这些预测与相关专家的判断进行比较,证明了T5预测的准确性。T5在iCBT平台上的应用有望实现更高效的CR, Shidara等人(2022)和Jiang等人(2024)也都强调了自动识别CR中患者认知扭曲和情绪的重要性,对此也做出了相应的努力。特别是Jiang等人(2024)借鉴CBT中的ABCD模型,采用预训练模型ERNIE 3.0构建了一个层次文本分类模型,用于从用户语句中自动提取思想和情感。此外,他们还验证了llm在该任务中的有效性。
b.行为激活(BA)
行为激活(BA)是CBT中一种重要的治疗策略,主要针对可观察到的行为进行干预,Petersen等人(2016)。在BA中,治疗师与来访者合作制定具体的目标和计划,鼓励消极行为模式的改变,逐渐增加积极活动的频率和多样性,帮助来访者重新获得对日常生活的愉悦感和有意义的参与。Lewinsohn(1974)和Jacobson等人(1996)证明,行为激活的效果与完全CBT相当,与Dimidjian等人(2006)的药物治疗相当。患有精神疾病的人可能会出现日常活动减少、兴趣丧失、回避行为和社交回避等问题。为了促进BA的应用,研究人员开发了创新的干预措施。
创新的干预措施已被开发,以促进广管局的应用。Dahne等人(2019)开发了一款西班牙语行为激活自助移动应用程序,名为“ıvate!”在这款应用中,用户可以在五个生活领域确定个性化的价值观和相关活动,包括人际关系、日常责任、娱乐、职业和教育以及健康。评估结果也证明了该应用程序的可行性和初步有效性。Rohani等人(2020)开发了一种名为MUBS (mobile -based Behavioral Activation system)的移动医疗系统,通过行为激活疗法支持抑郁症患者。该系统实现了一种独特的基于内容的概率推荐算法,通过提供活动目录和个性化奖励来激励患者参与积极的行为,帮助他们建立对行为激活的认识。
而这些研究主要侧重于评估BA的疗效或开发应用程序来协助、提示和激励患者积极参与各种活动,而没有明确将AI与BA联系起来。在此背景下,Madhu等人(2022)和Rathnayaka等人(2022)探索了如何利用人工智能技术来提高行为激活的有效性。Madhu等人(2022)提出了一种利用人工智能进行活动识别的新方法。他们采用多模态数据(结合语音和文本),并利用BERT模型进行情感识别,同时使用逻辑回归进行情感检测。随后,采用情绪、情绪与关键词相结合的活动分类模型,准确识别适合行为激活的活动。该方法在情绪识别、情绪检测和活动识别任务中准确率超过80%。Rathnayaka等人(2022)设计并开发了一个名为Bunji的聊天机器人,利用人工智能技术提供情感支持、个性化行为激活和远程健康监测。在试点研究环境中的参与式评估也证明了聊天机器人的实用性和有效性。
c.暴露疗法(ET)
暴露疗法是CBT中的一种常见技术,它包括逐渐将患者暴露于引发焦虑或恐惧的情境中,以帮助他们适应和减少恐惧反应。它被用于治疗各种心理障碍,包括特定恐惧症、恐慌症、创伤后应激障碍(PTSD)、强迫症(OCD)和社交焦虑症。近年来,虚拟现实(VR)技术已经成为传统暴露疗法的有力辅助手段(Jameel(2020)),导致了虚拟现实暴露疗法(VRET)的发展,并通过对其在CBT中的有效性的研究得到了验证。Maples-Keller等人(2017);Ørskov等人(2022)。
虽然与CBT框架下的传统暴露疗法相比,VRET的治疗效果可能并不优越,但它具有增强患者舒适度、安全性、实时定制暴露内容、模拟个性化现实场景等独特优势。虚拟现实与认知行为疗法的结合导致了交互式应用程序和严肃游戏的发展,以增强治疗干预。Heng(2021)基于CBT的ABCDE模型开发了一款rpg风格的严肃游戏《ReWIND》。《ReWIND》的设计意图是让患有广泛性焦虑障碍(GAD)的玩家在虚拟环境中沉浸在各种焦虑情境中,并为他们提供建设性的心理干预。这款游戏旨在以一种吸引人的互动方式向玩家传递心理教育。同样,Giordano等人(2022)强调CBT是赌博障碍(GD)治疗中最成功的方案,他们基于VRET开发了一种名为Alter game的严肃虚拟游戏,旨在防止赌博障碍患者复发。此外,Michelle et al(2014)提出了一个名为CBT Assistant的Android应用程序,患者可以根据分级暴露治疗的通用模板选择、设置和定制自己的暴露恐惧阶梯。此特性将CBT Assistant与其他CBT应用程序区分开来。VRET与人工智能技术的融合进一步增强了其在应对心理健康挑战方面的有效性。
Ahs等人(2020)提出并讨论了利用可解释人工智能(XAI)加强虚拟现实环境中言语焦虑的CBT治疗的想法。Rahman等人(2022)使用公开可用的数据集探索了一系列机器学习模型在唤醒预测任务上的表现。他们提出了一个管道来解决VRET环境中各种参数配置的模型选择问题。
d.课后作业
CBT疗程通常持续45-60分钟,这对许多患者来说往往是不够的。家庭作业弥补了疗程之间的差距,使患者能够应用学到的技能,并使治疗师能够评估技能的获得和维持(Beck, 1979);LeBeau et al(2013)。在专业文献中,家庭作业经常被描述为精确的、结构化的治疗任务,在治疗期间完成。这个过程需要协作描述家庭作业的治疗目标,确定作为家庭作业组成部分的相关活动或数据收集,制定家庭作业的实际执行策略,并随后在后续会议中审查家庭作业。家庭作业可能包括每节课的一系列活动,比如使用相关材料,记录思想和情绪,练习特定的技能或行为,或者与他人交流,Tang等人(2017)。
研究发现,持续完成家庭作业的客户比完成很少或不完成家庭作业的客户从干预中获得更大的好处。Burns和Spangler(2000),然而传统的纸质CBT家庭作业带来了各种障碍,这些障碍会严重破坏用户按照指示完成任务的动机。不遵守家庭作业被认为是CBT治疗失败的最常见原因之一,Helbig和Fehm(2004)在临床实践中一直是一个普遍存在的问题。数字设备和互联网的普及使得传统家庭作业转变为数字格式,从而提高了CBT家庭作业的依从性。然而,缺乏针对这一目的设计手机应用程序的指导方针。因此,Tang等人(2017)提出了旨在最大化CBT作业遵从性的最优移动应用程序的六个基本特征,旨在为此类应用程序的开发提供理论指导。
创新的方法,如将传统的日记写作与移动技术和大语言模型相结合,为提高家庭作业的依从性提供了有希望的解决方案。例如,Peretz等人(2023)开发了一种机器学习模型,能够根据治疗师和客户在现实环境中的自然语言对话,在治疗期间识别家庭作业的存在,并确定所分配的家庭作业的类型。这些进步在增强治疗师分配和监督家庭作业的能力方面有着重大的希望,最终促进了治疗结果的提高。尼泊尔等人(2024)将传统日记写作与移动技术和大语言模型相结合,创建了一个具有上下文感知的日记应用程序,名为MindScape。具体来说,该应用程序利用从智能手机收集的行为数据进行实时分析,并使用LLM提供个性化的、与上下文相关的写作提示。这些提示旨在引导用户进行反思和沉思,方便记录他们在日常生活中的想法。这种创新的方法不仅培养了定期自我反思的习惯,而且还解决了CBT中家庭作业依从性的挑战。在CBT治疗耳鸣期间,患者通常被分配各种作业任务,包括日记写作和自我监控。这些家庭作业主要由手写文本数据组成。然而,对治疗师来说,分析这些数据非常耗时,导致治疗效率下降。为了解决这一问题,Jeong等(2024)提出利用GPT-2等llm来分析CBT患者的作业数据。他们的目标是从作业中预测耳鸣障碍量表(THI)的分数,进而预测CBT治疗的结果,从而能够选择更个性化和有效的治疗方案。此外,他们比较了最新语言模型的表现,特别是谷歌的T5和Flan-T5,在预测THI分数方面。最后,他们展望了这项研究的应用,以监测和预测CBT治疗抑郁症患者的有效性。
总之,人工智能通过利用自然语言处理和机器学习技术增强了各种CBT策略,提高了有效性和参与度。
3.2.2 开发全面实施CBT的人工智能工具
虽然CBT策略经常单独讨论,但在临床实践中,它们通常结合起来解决客户的特定需求。人工智能的最新进展促进了利用CBT原理和技术的数字工具的创造。这些工具整合了多种CBT策略,从而提供了综合的治疗方法。人工智能聊天机器人,也被称为对话代理或关系代理,就是这种创新的例证,其中聊天机器人尤其引人注目。根据Abd- alrazaq等人(2019)的一篇综述,在17个提供心理治疗的聊天机器人中,有10个基于CBT。它们能够模仿人类治疗师的沟通方式,让用户参与包括语言和非语言交流在内的互动对话。这使他们能够提供有效的、个性化的、容易获得的CBT治疗,全天候可用。Woebot、Wysa、Tess和Youper等先锋聊天机器人就是这一趋势的代表。作为基于认知行为疗法的有效心理支持系统,他们的创新方法和效果已经获得了极大的关注和认可。近年来,为了应对多样化的需求,研究人员基于CBT原理开发了许多新的AI工具Oliveira et al (2021);Rizea (2022);Rani et al . (2023);Sabour等人(2023);Su et al . (2022);Nwoye et al .(2024)。如表1所述,我们概述了目前在CBT干预中使用的特定AI工具。
AI tools | 描述 |
Woebot | Woebot是一个聊天机器人,为抑郁症和焦虑症提供基于cbt的治疗。它让用户参与日常对话,跟踪他们的情绪,并通过短视频或互动文字游戏介绍CBT概念。Woebot利用决策树和自然语言处理技术,能感同身受地做出回应,并提供有用的建议。它还可以检测有关的语言,并指导用户到外部资源,如果需要。 |
Wysa | Wysa是一款治疗聊天机器人,旨在帮助解决抑郁、焦虑、压力和孤独等心理健康问题。它利用认知行为治疗、正念和积极心理学技术。Wysa使用由临床医生开发的预先制作的治疗对话来进行安全有效的互动,而不是人工智能生成的反应。它的自适应人工智能能够理解复杂的用户输入,并提供移情反馈和定制的基于cbt的工具。 |
Youper | Youper是一个聊天机器人,它通过三个步骤提供CBT:个性化的心理健康评估,通过对话提供即时支持,以及症状监测。它使用决策树选择反应,进行实时情绪分析,并根据用户的情绪状态提供CBT干预。 |
Tess | Tess是一个心理人工智能聊天机器人,为心理健康支持、心理教育和提醒提供简短的对话。它使用临床医生准备的陈述,根据用户报告的情绪进行干预。Tess根据用户反馈调整其反应,对积极的反应倾向于基于cbt的干预,并为中性或消极的反应提供替代方案。该平台是可定制的,以配合特定的治疗或用户统计数据。 |
BetterHelp | BetterHelp是一个在线治疗平台,它使用人工智能为患者匹配有执照的治疗师,并提供各种方法,如CBT和心理动力疗法。 |
Rumi (Oliveira) | Rumi是一个使用以反刍为重点的认知行为疗法(RFCBT)来探索思想、感觉和行为之间的关系的聊天机器人,旨在改善心理健康,减少抑郁和焦虑症状。 |
Cloud Bot | Cloud Bot是一个利用NLP技术作为心理学家的聊天机器人。它侧重于应用认知重构CBT技术来解决用户问题 |
Saarthi | Saarthi是一个使用自然语言处理和人工智能的聊天机器人,为有心理健康问题的人提供CBT和远程健康监测。它提供可获得、负担得起和方便的实时循证治疗,旨在减少焦虑和抑郁症状,并实现长期精神健康监测。 |
SchizoBot | SchizoBot是一个聊天机器人,使用人工神经网络提供CBT来管理精神分裂症,帮助临床医生并确保患者的治疗管理一致。 |
XIAO AN | “小安”是一款中国人工智能心理治疗机器人,旨在监测情绪并提供有效的治疗,主要采用CBT原理。它在临床试验中显示出治疗焦虑症的有效性,而无需替代治疗师。 |
Emohaa | Emohaa是一个中文会话代理,由两个平台组成:一个是基于模板的(CBT-Bot),用于基于认知行为治疗原则的结构化对话和练习,另一个(ES-Bot)允许就情感问题进行开放式讨论并提供情感支持。 |
通过提供高效、个性化和易于获得的CBT治疗,这些人工智能代理为接受治疗的个体提供全天候支持,这在一定程度上有助于缓解医疗资源不足的压力。然而,值得注意的是,鉴于心理健康支持的敏感性,在向用户展示聊天机器人之前,对它们进行评估是至关重要的。
3.2.3 实时监控与反馈
传统的CBT通常缺乏实时监控能力,仅仅依赖于客户自我报告的数据。然而,移动医疗技术的出现为监测CBT会话之外的客户健康提供了新的可能性。根据Yang等人(2018)的研究,CBT非常适合移动平台应用,这有助于实时监控用户状态,并为治疗师提供有价值的数据。因此,已经开发了许多移动应用程序来提供CBT治疗并实时跟踪用户的心理状态。
Addepally和Purkayastha(2017)指出,孤独可能是抑郁症的一个风险因素。为了解决这个问题,开发了MoodTrainer应用程序,它可以实时跟踪用户的位置和隔离行为,并在检测到相关行为时提供CBT干预。此外,Michelle et al(2014)介绍了一款名为CBT Assistant的Android应用程序。这款APP分析来自社交焦虑障碍(SAD)患者的输入数据,以识别引发其心理健康问题的压力源或情况,并评估其严重程度。此外,一些移动应用程序是为特定的CBT治疗场景而设计的,例如持续跟踪睡眠障碍患者的睡眠模式Schabus等(2023)或向吸烟者Alsharif和Philip(2015)提供戒烟监测和CBT示例,从而提高他们的成功率。这些移动应用程序利用移动设备的功能来收集实时数据,并为接受CBT治疗的个人提供个性化的干预和支持。
近年来,配备人工智能技术的可穿戴设备和智能手机应用程序正在成为监测患者心理状态的趋势。在CBT过程中,人工智能算法可以监测压力水平、身体活动、语言变化等指标,以检测患者心理状态的变化。这些算法可以向患者和医疗保健提供者发送及时警报。Garcia-Ceja等人(2015)将加速度计传感器嵌入智能手机中,使用朴素贝叶斯和决策树等分类算法检测压力水平,准确率达到71%。此外,对大型数据集的长期收集和分析可以帮助治疗师和患者更深入地了解患者的心理健康模式。在人工智能的帮助下,治疗师可以获得更全面的信息,使他们能够辨别心理健康的趋势,识别触发因素,并评估治疗效果。这些见解对于做出明智的治疗决策和设计个性化干预措施至关重要。Goodwin等人(2019)收集了20名被诊断为ASD的青少年的腕式生物传感器的生理和运动数据。他们利用脊化逻辑回归建立了预测模型。这些模型在预测随后几分钟内发生的对他人的攻击行为实例方面显示出很高的准确性。这些进展为未来的主动行为干预和及时适应性干预系统奠定了基础。尽管越来越多地使用配备人工智能的可穿戴设备和移动应用程序来监测心理状态和数据收集,但专门针对它们在CBT中的应用的研究相对有限,特别是考虑到这种治疗方法固有的实时交互的独特需求。
3.2.4 早期预测治疗结果
即使在CBT被证明有效的患者中,也可能有一小部分患者获益有限,这可能导致客户时间和有限医疗资源的分配不当。因此,在治疗过程的早期预测治疗结果至关重要,特别是为了防止客户时间和医疗资源的错误分配。人工智能和大规模数据分析的最新进展使能够以高精度预测个体对CBT反应的模型得以发展。Hahn等人(2015)应用了一种新的机器学习方法,利用FMRI数据预测被诊断为惊恐障碍和广场恐怖症(PD/AG)的患者对CBT的个体水平反应。同样,Tolmeijer等人(2018)利用机器学习方法来预测人们在为精神病提供CBT时的反应。他们的方法分为两步,首先确定潜在的预测区域,然后在这些区域的基础上建立一个模型,以做出个人层面的预测。在一项大规模研究中,Kaldo等人(2021)分析了6000多名接受互联网交付CBT (ICBT)的患者的数据。他们评估了各种机器学习算法在预测治疗结果方面的准确性,并探索了将这些算法整合到自适应治疗策略中的方法。Isacsson等人(2023)进一步研究了机器学习在预测ICBT结果方面的临床应用。他们研究了治疗过程中模型预测准确性的最佳时机,以支持适应性治疗策略,提出了最佳预测模型,并在综合分析的基础上提出了具体建议。尽管取得了进步,但传统的预测模型往往表现出有限的准确性,特别是在评估治疗青少年社交焦虑的有效性方面。在此背景下,Zheng等人(2022)利用深度学习技术构建了CBT与青少年社交焦虑相关性的预测模型,与传统模型相比,预测精度显著提高,复杂性显著降低。Prasad等人(2023)试图开发一种最先进的深度学习框架,通过利用客户报告的心理健康症状的大规模高维时间序列数据和平台交互数据,预测ICBT的临床结果。
许多研究人员还探索了与特定疾病相关的特定治疗结果预测因子和潜在生物标志物的使用。例如,Wei等人(2023)使用汉密尔顿抑郁评定量表(HDRS)评分作为主要结局指标来调查接受CBT的受试者的症状变化。利用机器学习算法,他们开发了一个支持向量回归模型,最终确定了左背外侧前额叶皮层(DLPFC)区域同质性(ReHo)作为CBT治疗抑郁症效果的神经成像生物标志物。许多先前的研究都依赖于高度选择性的样本来预测CBT的结果。然而,很少有人利用常规的社会人口统计学和临床数据来完成这项任务。因此,Hilbert等人(2020,2021)将机器学习方法应用于临床和社会人口统计数据,以预测个体患者的心理健康治疗结果。他们的研究结果表明,仅使用常规数据就可以预测精神障碍的治疗结果,其准确性大大超过了偶然水平。
这些研究共同强调了将先进的人工智能方法与临床实践相结合的前景,以增强对CBT治疗结果的早期预测,为更有针对性和更有效的治疗干预提供了潜在的途径。
3.2.5 CBT治疗中治疗师和来访者的评价
人工智能在认知行为治疗中的应用不仅局限于疾病的诊断和评估,还包括通过分析治疗过程中的对话数据对治疗师和客户进行关键评估。
a.治疗师治疗质量评估
鉴于心理健康问题的普遍存在,确保心理治疗的质量对于解决日益增长的心理健康需求和社会环境的复杂性至关重要。传统上,质量评估是由人类评估人员进行的,他们听取治疗录音并审查治疗笔记,以评估特定的治疗技能。然而,这种方法既昂贵又耗时,因此可行性有限,阻碍了在实际环境中的广泛实施。为了应对这些挑战,一些研究人员和技术开发人员已经开始探索使用自动化技术来监测心理治疗的质量。人工智能为评估治疗过程和监测CBT过程的治疗保真度提供了自动化解决方案,Chen等(2022a)。例如,Ewbank等人(2020)使用了一个大型数据集,其中包含来自14000多名接受互联网CBT (IECBT)的患者的会话记录,以训练一个深度学习模型,根据治疗师在治疗中扮演的角色自动对治疗师的话语进行分类,从而产生可量化的治疗效果。治疗师提供的内容与标准CBT协议越接近,它与患者显著症状改善的正相关程度越高。相反,与治疗无关的内容数量呈负相关。这种方法允许治疗师对CBT心理治疗的疗效进行间接评估。然而,Flemotomos等人(2021)强调,对于CBT,最常用的编码方案是认知治疗评定量表(CTRS),它定义了一组11个会话级别的代码,反映了特定于干预的技能和技术。因此,他们引入了一个基于治疗语言使用的适应性BERT表征的心理治疗课程质量评估模型。他们的分析集中在CBT会话的二元分类上,涉及到总体CTRS分数。Chen等(2022b)也使用CTRS评分来评估CBT疗程的质量。然而,与Flemotomos等人(2021)不同的是,他们提出了一个自动评估转录CBT相互作用质量的分层框架。Ardulov等人(2022)提出了一种明确关注控制仿射动力系统模型的方法。他们试图从对话的短窗口中提取局部动态模式,并学习将观察到的动态与CBT能力联系起来。此外,一些研究旨在通过分析治疗过程的记录,将治疗师的语言和行为与特定治疗模式的标准进行比较,从而确定治疗师擅长的领域和需要改进的领域,Stirman等人(2021);Flemotomos等人(2022);Zhang等(2023);Wang et al . (2024a)。这个过程有助于治疗师提高他们的专业技能,从而提高治疗的整体质量。特别是,Wang等人(2024a)开发了PATIENT-Ψ,这是一种用于CBT培训的新型患者模拟框架。具体而言,他们基于CBT原理构建了不同的患者概况和相应的认知模型,并使用大型语言模型作为模拟治疗患者。这个角色扮演治疗场景帮助心理健康受训者练习CBT技能。
b.患者治疗依从性的预测分析
治疗依从性是指患者积极参与并遵守医疗保健专业人员提供的建议和指示,从而坚持治疗方案的程度,它直接影响治疗的有效性和结果(DiMatteo et al . 2002)。因此,客户依从性评估是有效医疗服务的重要组成部分。特别是,在ICBT的背景下,医疗保健专业人员与客户之间面对面的互动减少了,这可能导致客户参与度低和辍学率高。人工智能模型可以分析患者在治疗过程中的行为和反应,以评估他们对治疗内容的理解、参与和依从性。C ø ot ' e-Allard等人(2022)提出了一种基于自注意深度神经网络的最低数据敏感性方法,用于对接受G-ICBT的客户进行依从性预测。这项研究利用了eMeistring平台7到42天的用户交互数据(登录/注销)。这种分析可以识别出可能有早期退出干预风险的个体。有了这些信息,临床医生可以实施有意义和有针对性的干预措施,如提醒、安排直接互动或修改治疗方法,以防止过早终止妊娠。
3.3 后处理阶段AI集成
3.3.1 长期治疗反应及复发预测
由于目前的CBT干预通常持续时间相对较短,导致一些患者治疗后效果的持久性不足,相当比例的患者在治疗停止后复发。因此,预测个体长期临床反应和复发风险仍然是一个重大挑战。人工智能为预测CBT患者的复发风险和增强CBT效果的持久性提供了一条有希望的途径。M˚ansson等(2015)首次提出使用多变量SVM-fMRI方法成功预测ICBT治疗社交焦虑障碍的长期治疗反应,预测准确率达到92%(95%置信区间73.2-97.6)。Lorimer等人(2021)利用机器学习技术,特别是XGBoost算法,分析了接受低强度认知行为疗法(LiCBT)患者的随访数据。他们开发了一种动态预测工具,能够在患者治疗过程中的四个不同时间点识别复发风险较高的病例,并能够动态调整预测准确性。该工具早期识别高复发病例的能力,结合有针对性的复发预防措施,可以显着提高LiCBT在心理资源有限的情况下的长期疗效。
总之,人工智能在CBT中的整合有望彻底改变心理干预的方式和效果。通过在治疗过程的各个阶段利用人工智能技术,临床医生可以提高治疗效果,个性化干预措施,优化资源分配,最终在全球范围内改善个人的心理健康状况。
4 数据集
数据集在推动CBT和人工智能交叉研究方面发挥着至关重要的作用,为训练、测试和验证人工智能算法提供了基础材料,并为从业者和研究人员提供了构建和评估CBT模型的基础。本节旨在回顾与CBT和人工智能应用相关的现有公开数据集。在疾病诊断和评估任务的背景下,许多数据集已经在各种综合性文章中得到了广泛的审查。因此,我们不会在本文中进一步阐述这些数据集。此外,值得注意的是,对于选择个性化治疗策略的任务,明显缺乏公开可用的数据集。本文将不详细介绍这些数据集。相反,我们专注于特定CBT相关任务的数据集,如识别和分类认知扭曲、进行认知重构和分析CBT会话数据。为清楚起见,在文献中描述不清楚或模棱两可的数据集将不在本文中讨论。
表2提供了用于检测和分类认知扭曲的数据集的全面概述。从表中可以看出,认知扭曲数据集以英文数据集居多,中文数据集较少。此外,这些数据集提出了几个值得注意的挑战:首先,可靠性低。不同数据集的标记标准差异很大,导致不一致。此外,标签认知扭曲的固有主观性进一步损害了可靠性。其次,数据失衡的问题很明显,某些类别的认知扭曲缺乏足够的代表性。这种不平衡妨碍了模型在所有类中很好地泛化的能力。表3总结了与认知重构相关的数据集。此外,表4概述了涉及CBT对话的数据集。对于这些领域,高质量的、带注释的数据集对于认知重构和CBT会话分析来说尤其稀缺。
Table2:认知扭曲数据集。为了清晰的展示,我们只展示了认知扭曲数据集的简化版本,参见附录a了解更多细节。
Study | Description |
Wang et al | 数据集的大小:共有11种认知扭曲类型的1644个数据条目,正常情况的2000个条目。 |
Elsharawi and EI Bolock | 数据集的大小:共有11种认知扭曲类型的1644个数据条目,正常情况的2000个条目。 |
Shickel et al | 数据集的大小:数据集CrowdDist在所有15种扭曲中包含7,666个文本,平均每个扭曲有511个响应。MH数据集包含两个子集:MHC数据集标注了15个认知扭曲标签,包含1164个扭曲文本;MH- d数据集标注了二元扭曲/非扭曲标签,其中扭曲文本1605个,未扭曲文本194个。 语言:英语。 |
Lim et al | 数据集的大小:共有2530个样本,跨越10种认知扭曲类型。 |
Shreevastava and Foltz | 数据集规模:共3000个样本,其中39.2%被标记为未扭曲,其余样本被识别为10种类型的扭曲。 |
de Toledo Rodriguez et al | 数据集大小:共200个样本,涵盖14种认知扭曲类型。 |
Sharma et al | 数据集大小:13种认知扭曲类型共1077个样本。 |
Maddela et al | 数据集的大小:10种认知扭曲类型的大约10k个样本。 |
Wang et al | 数据集的大小:7500个认知扭曲的想法跨越7种常见的认知扭曲。 |
Qi et al | 数据集的大小:共有3407篇文章,涉及12种认知扭曲类型。 |
Na | 数据集的大小:共有22,327个样本,跨越10种认知扭曲类型。 |
Table3:认知重构数据集
Study | Tasks | Dataset source | Description |
Sharma et al | 通过人-语言模型互动对消极思想的认知重构。 | 思想记录数据集和美国心理健康(MHA)网站。 | 数据集的大小:总共300个情景-思想对,每个情景重新定义思想。 |
Lin et al | 认知扭曲与认知重构的检测 | 语料库标注使用了一个专门的开源数据集,即中国心理学问答数据集PsyQA Sun et al(2021)。 | 数据集的大小:总共1900个句子。 |
Shidara et al | 自动思维与认知重构的识别与评价。 | 招募参与者。 | 数据集大小:未报告。 |
Table4:CBT会话数据集
Study | Tasks | Dataset source | Description |
Lee et al | 基于心理治疗模型增强大语言模型的共情反应。 | Sharma等人(2020)众包Reddit上的心理健康帖子。 | 数据集的大小:共情策略分为三个层次,每个策略的配对数为:“情绪反应”= 1047,“探索”=481,“解释”= 1436。 |
Na | 通过大预言模型提高心理支持的准确性和有效性 | 获取PsyQA Questions Sun et al(2021),该问题来源于中国在线心理健康支持论坛易心力,然后利用CBT Prompt生成CBT答案。 | 数据集大小:22,327个条目,每个条目包括问题、描述和CBT响应。 |
5 讨论
人工智能与CBT的结合在治疗前评估、治疗过程和治疗后随访方面取得了重大进展。首先,人工智能通过协助治疗前筛查和诊断,减少治疗师的工作量,并通过预测能力实时调整治疗计划,提高了效率。其次,人工智能通过分析丰富的患者数据和识别微妙的模式,实现了更个性化的CBT,实现了定制的治疗计划,超越了传统上仅依赖治疗师专业知识的传统。最后,人工智能驱动的CBT平台通过提供全天候支持的在线平台和移动应用程序提供远程和具有成本效益的治疗选择,增加了精神卫生服务的可及性。然而,目前人工智能在CBT中的应用存在一些局限性。在治疗前评估中,人工智能在使用文本数据诊断心理障碍、评估认知扭曲和情绪状态方面表现出色,但在分析视频、音频和行为数据方面的应用较少。综合诊断的多模态数据的潜力在很大程度上仍未得到开发。在治疗过程中,人工智能增强了个体CBT策略,但难以全面覆盖干预的复杂性。聊天机器人和虚拟治疗助理等人工智能工具质量参差不齐,缺乏标准化开发,导致不一致。此外,评估可行性、参与度和满意度的指标不足,使平台比较和改进变得复杂。大多数人工智能驱动的可穿戴设备和移动应用程序专注于心率和活动水平等一般指标,缺乏监测cbt特定指标的专门工具。在治疗后,虽然人工智能有助于预测长期治疗反应和复发风险,但面临的挑战包括预测数据的可变性以及利用预测结果制定个性化干预策略的研究不足。
人工智能在CBT领域的未来潜力巨大。自主学习和适应性治疗系统可以模仿人类CBT治疗师,参与与患者的多轮互动,并根据实时反馈调整策略。群体智能支持和决策系统可以通过汇集经验丰富的从业者的经验和促进智能社会支持来改善治疗师指导和患者结果。认知增强和辅助系统可以开发个性化的工具来增强认知功能,从而提高CBT的有效性。定制化、个性化的CBT模式可以适应用户的社会背景、文化、教育、环境等具体数据,提供量身定制的响应和干预措施,提高治疗效果和用户满意度。尽管人工智能潜力巨大,但仍有几个挑战需要解决。数据安全和隐私是至关重要的,需要遵守隐私法规、匿名化敏感信息和先进的加密技术。必须通过确保数据多样性、让多个利益相关者参与开发以及持续监测人工智能系统来减轻道德和算法偏见。模型的可解释性和透明度对于负责任的人工智能决策至关重要,这需要提高可解释性和使用经过严格测试的模型的方法。过度依赖人工智能是有风险的,因为CBT的成功取决于治疗师与患者的关系,而人工智能无法复制这种关系。人工智能应该是一种补充工具,而不是替代品。考虑到培训成本和对医疗实践的影响,在临床实践中评估模型对于评估现实世界的有效性、接受度、信任度和可用性是必要的。总之,尽管人工智能为CBT提供了有希望的增强功能,但必须负责任地、合乎道德地使用它,补充专业治疗师的指导。最终的目标是使用技术来支持,而不是取代,以人为本的精神卫生保健。
6 结论
在本文中,我们对人工智能技术融入CBT进行了全面的文献综述。我们探索了人工智能在CBT过程中的应用,强调了其重大的变革性影响和现有的局限性。随后,我们总结了与各种cbt相关任务相关的公开可用数据集,为未来的研究提供基础。我们提出了未来的研究方向,并承认人工智能在临床环境中面临的实际挑战。总的来说,我们的回顾阐明了人工智能在CBT中的多方面整合,强调了它的潜力,同时提供了对其能力的细微理解。我们希望这些发现能够指导未来的研究,为临床实践带来新的视角,并为精神卫生保健的发展做出贡献。