数塔
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 54035 Accepted Submission(s): 31715
Problem Description
在讲述DP算法的时候,一个经典的例子就是数塔问题,它是这样描述的:
有如下所示的数塔,要求从顶层走到底层,若每一步只能走到相邻的结点,则经过的结点的数字之和最大是多少?
已经告诉你了,这是个DP的题目,你能AC吗?
有如下所示的数塔,要求从顶层走到底层,若每一步只能走到相邻的结点,则经过的结点的数字之和最大是多少?
已经告诉你了,这是个DP的题目,你能AC吗?
Input
输入数据首先包括一个整数C,表示测试实例的个数,每个测试实例的第一行是一个整数N(1 <= N <= 100),表示数塔的高度,接下来用N行数字表示数塔,其中第i行有个i个整数,且所有的整数均在区间[0,99]内。
Output
对于每个测试实例,输出可能得到的最大和,每个实例的输出占一行。
Sample Input
1
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
Sample Output
30
数塔的自底而上的思想在dp中也很重要,当然这道题也可以自上而下,只不过要遍历dp[ n ][ i ]中最大值
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int dp[105][105];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n;
memset(dp,0,sizeof(dp));
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=i;j++)
{
scanf("%d",&dp[i][j]);
}
}
for(int i=n;i>=1;i--)
{
for(int j=1;j<=i;j++)
{
dp[i][j]=max(dp[i+1][j],dp[i+1][j+1])+dp[i][j];
}
}
printf("%d\n",dp[1][1]);
}
return 0;
}