1009 数字1的数量
基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题
给定一个十进制正整数N,写下从1开始,到N的所有正数,计算出其中出现所有1的个数。
例如:n = 12,包含了5个1。1,10,12共包含3个1,11包含2个1,总共5个1。
Input
输入N(1 <= N <= 10^9)
Output
输出包含1的个数
Input示例
12
Output示例
5
思路:求当前数位上出现目标数p的次数 sum 。设当前数位上的数为 x;有三种情况:
1.x>p 则sum 受到当前位以及高位的影响。
2.x==p 则sum 受到低位以及高位的影响
3.x<p 则sum 受到高位的影响.
以上是可以统计0-9出现的次数,这里只让统计1.
我们统计每个位置上可能出现1的数,这样就把问题拆开了。
比如:12。个位上可能出现1的数为1,11(一共2个),十位上可能出现1的个数为10,11,12(一共3个),加一起正好是5。(至于11是否重复的问题,还是再理解一下上面的做法,这个做法只考虑了每一位出现1的数,11在个位上算和在十位上算是不一样的,所以并没有重复)。
那么我们再看一个多位数21905:
个位:它出现1的数为:1 ~ 21901,一共 2190 - 0 + 1 = 2191。为什么加1,相当于00001-21901,高位0000-2190共2191种情况.
十位:它出现1的数为:1x ~ 2181x (x 从0到9)一共:(218 - 0 + 1)*10 = 2190。此时高位为219,但是因为x<p,此时只能高位-1=218,但是像上面个位情况一样,我们还得再加1,减一加一,可以省略,直接用高位219.
百位:它出现1的数为:1xx ~ 211xx ,一共:(21 - 0 + 1)* 100 = 2200
千位:它出现1的数为:1xxx ~ 11xxx 和 21000 ~ 21905 ,那么很明显,这个情况就比较特殊了,为什么呢?就是思路中的x=p和高位低位都有关。,我们先计数,一共:(1 - 0 + 1)*1000 + (905 - 0 + 1)= 2000 + 906 = 2906=高位*1000+低位+1。当高位取0时,x=p,低位就是次数,加1是当高位低位都为0时,例如01000这种。
万位:它出现1的数为:1xxxx ~ 1xxxx,一共:10000
那么我们求和:2191 + 2190 + 2200 + 2906 + 10000 = 19487
区间都是从1开始的,所以当我们统计0出现的个数时,是不考虑上述的加一的,因为例如个位 00000-21900 ,00000是不会出现的(区间大于1) 当然这道题是统计1的数量,自然是不用考虑这些了。
#include<stdio.h>
#include<string.h>
using namespace std;
#define LL long long
int main()
{
LL n;
while(~scanf("%lld",&n))
{
LL lower=0,curr=0,higher=0;
LL d=1,ans=0;
LL p=1;//统计1
while(n/d!=0){
lower=n-(n/d)*d;//低位
curr=(n/d)%10;//当前位
higher=n/(d*10);//高位
if(curr<p) {
ans+=higher*d;//加一减一抵消了
}
else if(curr==p) {
if(p) ans+=higher*d+lower+1;
else ans+=(higher-1)*d+lower+1;//因为是统计1,这可以忽略
}
else {
if(p) ans+=(higher+1)*d;
else ans+=higher*d;
}
d*=10;
}
printf("%lld\n",ans);
}
return 0;
}