Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
这篇文章的出发点是用在图像翻译时源域和目标域没有配对数据的场景。
所以这篇文章提出了循环一致性损失,我们要学习一种映射G:X->Y,使得来自源域的数据X经过映射得到的G(X)能够与目标域的数据Y 是尽可能相似的,但是这样的约束是不够的,因为G是随机的,有无限多的映射可以将X映射为与Y同分布的。所以还添加了一个逆映射F:Y->X,这样一来一回,理想状态下应该回到原点。
见(a),所以引入了两个映射函数G和F,以及两个判别器DX和DY,
DX是为了区分x和F(y),DY是为了区分y和G(x)。
因此,目标函数包括两部分,一是对抗损失,二是循环一致性损失。
DY的对抗损失:
类似的,还有DX的对抗损失:
循环一致性损失: