关于Cycle-GAN

本文介绍了如何利用Cycle-Consistent Adversarial Networks (CycleGAN)在无源目标域配对的情况下进行图像翻译。通过引入G和F映射函数,以及DX和DY判别器,文章详细阐述了对抗损失和循环一致性损失的使用,以实现图像之间的转换并保持原始信息的循环一致性。
摘要由CSDN通过智能技术生成

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

这篇文章的出发点是用在图像翻译时源域和目标域没有配对数据的场景。

所以这篇文章提出了循环一致性损失,我们要学习一种映射G:X->Y,使得来自源域的数据X经过映射得到的G(X)能够与目标域的数据Y 是尽可能相似的,但是这样的约束是不够的,因为G是随机的,有无限多的映射可以将X映射为与Y同分布的。所以还添加了一个逆映射F:Y->X,这样一来一回,理想状态下应该回到原点。

见(a),所以引入了两个映射函数G和F,以及两个判别器DX和DY,

DX是为了区分x和F(y),DY是为了区分y和G(x)。

因此,目标函数包括两部分,一是对抗损失,二是循环一致性损失。

DY的对抗损失:

类似的,还有DX的对抗损失:

循环一致性损失:

  

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值