Python 机器学习:超参数调优

本文介绍了机器学习中的超参数概念,并探讨了三种超参数调优方法:GridSearchCV、RandomSearchCV和贝叶斯优化。GridSearchCV通过穷举超参数组合寻找最优值,RandomSearchCV在预设范围内随机搜索,而贝叶斯优化利用高斯过程迭代寻找更优参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.什么是超参数

超参数(hyper parameters)就是机器学习或深度学习算法中需要预先设置的参数,这些参数不是通过训练数据学习到的参数;原始算法一般只给出超参数的取值范围和含义,根据不同的应用场景,同一个算法的同一超参数设置也不同。

那超参数应该如何设置呢?似乎没有捷径,去尝试不同的取值,比较不同的结果取最好的结果。

本文整理了不同的尝试方法,如下:

  • RandomSearch

  • GridSearch

  • 贝叶斯优化(Bayesian optimization)

2. GridSearchCV

暴力穷举是寻找最优超参数一种简单有效的方法,但是对于算法庞大的超参数空间来说,穷举会损耗大量的时间,特别是多个超参数情况下。GridSearchCV的做法是缩减了超参数值的空间,只搜索人为重要的超参数和有限的固定值。同时结合了交叉验证的方式来搜索最优的超参数。

拿lightgbm为例子:

import pandas as pd
import numpy as np
import math
import warnings
import lightgbm as lgb
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RandomizedSearchCV

lg = lgb.LGBMClassifier(silent=False)
param_dist = {"max_depth": [2, 3, 4, 5, 7, 10],
              "n_estimators": [50, 100, 150, 200],
              "min_child_samples": [2,3,4,5,6]
             }

grid_search = GridSearchCV(estimator=lg, n_jobs=10, param_grid=param_dist, cv = 5, scoring='f1', verbose=5)
grid_search.fit(X_train, y)
grid_search.best_estimator_, grid_search.best_score_

# Fitting 5 folds for each of 120 candidates, totalling 600 fits
# [Parallel(n_jobs=10)]: Using backend LokyBackend with 10 concurrent workers.
# [Parallel(n_jobs=10)]: Done  52 tasks      | elapsed:    2.5s
# [Parallel(n_jobs=10)]: Done 142 tasks      | elapsed:    6.6s
# [Parallel(n_jobs=10)]: Done 268 tasks      | elapsed:   14.0s
# [Parallel(n_jobs=10)]: Done 430 tasks      | elapsed:   25.5s
# [Parallel(n_jobs=10)]: Done 600 out of 600 | elapsed:   40.6s finished
# (LGBMClassifier(max_depth=10, min_child_samples=6, n_estimators=200,
#                 silent=False), 0.6359524127649383)

从上面可知,GridSearchCV搜索过程

  • 模型estimator:lgb.LGBMClassifier

  • param_grid:模型的超参数,上面例子给出了3个参数,值得数量分别是6,4,5,组合起来的搜索空间是120个

  • cv:交叉验证的折数(上面例子5折交叉), 算法训练的次数总共为120*5=600

  • scoring:模型好坏的评价指标分数,如F1值

  • 搜索返回: 最好的模型 best_estimator_和最好的分数

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV

3. RandomSearchCV

GridSearchCV一样,RandomSearchCV也是在有

### Python 中多层感知机 (MLP) 的超参数方法与技巧 #### 选择合适的损失函数 对于 MLP 来说,常用的损失函数之一是均方误差(MSE),其表达形式如下: \[ L(x, \hat{x}) = |x - \hat{x}|_2^2 = \sum_{i=1}^{d}(x_i - \hat{x}_i)^2 \][^4]。 #### 使用 K 折交叉验证评估模型性能 为了更可靠地估计模型的泛化能力,在训练过程中通常会应用 K 折交叉验证技术。通过这种方法可以在不同子集上测试模型的表现,从而获得更加稳定的评价指标。例如设置 `k` 值为 10 进行十折交叉验证,并记录每次迭代后的平均训练 log RMSE 和验证 log RMSE[^2]: ```python train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr, weight_decay, batch_size) print(f'{k}-折验证: 平均训练log rmse: {float(train_l):f}, ' f'平均验证log rmse: {float(valid_l):f}') ``` #### 参数网格搜索超参数组合 针对特定任务超参数时,可以通过尝试多种可能的配置找到最解。这涉及到对学习率 (`lr`)、权重衰减系数 (`weight_decay`) 及批量大小 (`batch_size`) 等重要参数的选择。这些参数需经过反复试验以达到最佳效果。 #### 数据预处理的重要性 值得注意的是,良好的数据质量对于任何机器学习项目都至关重要。即使是最先进的算法也无法弥补低质输入带来的负面影响。因此,在进行超参数之前应确保已经进行了充分的数据清洗、特征工程等工作,使训练样本尽可能接近真实场景中的分布情况[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值