AI领域基本语法笔记

1. Numpy

1.1 np.hstack & np.vstack

  • np.hstack: horizontal,横向组合数组,往右排
  • np.vstack: vertical,纵向组合数组,往下排

numpy中的hstack()、vstack()、stack()、concatenate()函数详解 - 云+社区 - 腾讯云

1.2 np.random

提供了各种随机数的函数,涵盖整型、浮点型、指定值域、多维随机。详见:

NumPy – np.random的使用 – X.YU

  • 有些函数无参数使用是具有相同功能的
    • np.random.random()和np.random.uniform()都可以返回0-1的随机数。
    • np.random.choice()和np.random,randint()也有类似功能
  • 关于可以指定size的函数,每一次随机之间是相互独立的,也就是随机出来的多维向量可能有重复的出现。

2. Pytorch

API链接:PyTorch documentation — PyTorch 1.11.0 documentation

1.1 torch.max()

torch.max()用法_西电小猪猪的博客-CSDN博客_torch.max

max既可以返回最大值,也能返回索引,对于高维数组是可以指定搜索维度的。dim = 0 表示按列求最大值,并返回最大值的索引;dim = 1 表示按行求最大值,并返回最大值的索引。

tensor.max用法类似,只不过不再需要输入tensor,而是直接调用即可。

1.2 unsqueeze()

升维运算,因为torch里单取一行一列一种操作会把tensor搞成1维的,为了和其他tensor同维度所以需要升维。

pytorch函数unsqueeze函数的理解_ljwwjl的博客-CSDN博客_unsqueeze函数

1.3 zero_grad()

每次计算中梯度是会累积的,所以常规做法是每次都要清一次梯度,然后通过loss重算一次:

机器学习9:关于pytorch中的zero_grad()函数_小娜美要努力努力的博客-CSDN博客_pytorch zero_grad

1.4 Categorial

专门用于做分布(distribution的相关操作)以及随机action的

probs = self.net(state)
m = Categorical(probs)
action = m.sample()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值