如今数字化转型已成为工业领域的必然趋势,其中,工业物联网(IIoT)和工业互联网作为推动工业数字化转型的重要力量,它们的共同目标都是为了提升工业生产的效率、降低成本并推动创新,但在技术特点和应用场景上有所不同。
工业物联网(IIoT)
工业物联网(IIoT)是将物联网技术延伸到工业领域,通过具有感知、管控能力的各类采集传感器、控制传感器或控制器,结合物联感知和通信技术,实现将传统工业提升到智能化的阶段。
1、主要特点:
- 涉及具有感知、监控能力的各类采集、控制传感器或控制器。
- 强调将物联网技术应用于工业生产的各个环节。
- 主要目的是优化生产过程、提高生产效率、降低制造成本。
2、应用领域:
工业物联网主要应用在制造、交通、运输、能源、矿山等行业领域。例如,在生产制造领域,企业可以通过IIoT监测生产线上的设备状态、实时生产数据,并进行预测性维护,从而提高生产效率和工艺控制。
1)生产线设备监控
- 传感器部署:在生产线上的关键设备上部署传感器,如温度传感器、压力传感器等。
- 数据收集:传感器实时收集设备的运行数据,如温度、压力、振动等。
- 数据分析:通过物联网平台对收集到的数据进行分析,监测设备的运行状态。
- 应用效果:及时发现设备异常,预防设备故障,提高生产线的稳定性和可靠性。
2)预测性维护
- 数据监测:利用传感器收集的数据,对设备的运行状况进行实时监测。
- 模型建立:基于历史数据和机器学习算法,建立设备的预测模型。
- 故障预测:通过模型预测设备的潜在故障,并提前进行维修计划。
- 应用效果:减少设备停机时间,降低维修成本,提高生产效率。
工业互联网
工业互联网是全球工业系统与高级计算、分析、感应技术以及互联网连接融合的一种结果。它通过智能机器间的连接并最终将人机连接,结合软件和大数据分析,重构全球工业,激发生产力。
1、主要特点:
- 强调人、数据和机器的互联。
- 涉及全球工业系统与高级计算、分析、传感技术及互联网的高度融合。
- 目标是实现工业数据的收集、存储、分析和应用。
2、应用领域:
工业互联网同样在制造领域有广泛应用,但更注重整个工业体系的智能化和数据驱动。通过连接工业系统中的各种设备、传感器和系统,工业互联网可以实现数据的共享和分析,从而优化工业生产和管理。例如以下智能仓储物流管理。
1)实时库存监控
- RFID技术:在仓库中部署RFID读写器和标签,实现货物的实时跟踪和定位。
- 数据共享:通过工业互联网平台,实现仓库管理系统与供应链管理系统之间的数据共享。
- 库存管理:根据实时库存数据,进行库存预警和补货计划。
- 应用效果:降低库存成本,提高库存周转率,优化供应链管理。
2)智能调度优化
- 数据分析:利用工业互联网平台对运输数据进行大数据分析,如运输时间、路线等。
- 优化算法:基于分析结果,利用优化算法为运输车辆规划最优路线和调度方案。
- 实时调整:根据实时交通状况和货物需求,动态调整运输计划。
- 应用效果:提运输效率,降低运输成本,提升客户满意度。
工业物联网和工业互联网在应用中各有侧重。工业物联网更侧重于通过物联网技术实现设备的实时监控和预测性维护,提高生产线的稳定性和可靠性;而工业互联网则更侧重于通过工业互联网平台实现数据的共享和分析,优化供应链管理和运输调度,提高整个工业生态系统的效率和效益。这两个概念在实际应用中经常相互融合,共同推动制造业和工业领域的发展。