前言
血管分割是血管相关疾病的前提。在这篇论文,我们回顾SOTA的血管分割方法,将他们分成两个类别:rule-based, machine-learning-based methods. 前者rule-based方法基于直观和惊喜设计的规则集来区分血管结构和背景,而后者machine-learning-based方法根据以往的经验通过自我学习的规则进行分割。
Rule-based method
将rule-based方法分成Hessian matrix, marching filtering, mathematical morphology, minimal path, active contour, 和graph-based.
2.1 Hessian matrix method
与周围的背景相比血管通常很薄、细长、明亮。每个像素代表其有血管区域的关系,Hessian matrix的特征值可以用来作为区分函数,对血管结构有最大的反应。
缺点,首先Guassian函数通常作为消除招生的影响,但是对血管结构和背景都会有影响。第二,Hessian matrix对梯度很敏感,所以尖锐的边界会影响分割结果。
2.2 Marching filtering method
Marching filtering method假设血管横截面的强度具有Guassian-like剖面。line detector从不同的方向评估沿固定长度线通过目标像素的平均强度。
2.3 Mathematical morphology method
Mathematical morphology operation通常被用作管状结构提取的预处理。
2.4 Minim