Segmentation of blood vessels using rule-based and machine-learning-based methods:A review

本文回顾了血管分割的最新进展,将其分为规则基础和机器学习基础两类。规则基础方法包括Hessian矩阵、行进过滤、数学形态学等,而机器学习基础方法侧重于传统的机器学习和深度神经网络。尽管每种方法都有其优势和局限性,但深度学习,尤其是卷积神经网络,在视网膜血管分割方面展现出潜力。未来的研究挑战在于扩展这些方法到脑血管和冠状动脉的分割。
摘要由CSDN通过智能技术生成

前言

血管分割是血管相关疾病的前提。在这篇论文,我们回顾SOTA的血管分割方法,将他们分成两个类别:rule-based, machine-learning-based methods. 前者rule-based方法基于直观和惊喜设计的规则集来区分血管结构和背景,而后者machine-learning-based方法根据以往的经验通过自我学习的规则进行分割。

Rule-based method

将rule-based方法分成Hessian matrix, marching filtering, mathematical morphology, minimal path, active contour, 和graph-based.

2.1 Hessian matrix method

与周围的背景相比血管通常很薄、细长、明亮。每个像素代表其有血管区域的关系,Hessian matrix的特征值可以用来作为区分函数,对血管结构有最大的反应。

缺点,首先Guassian函数通常作为消除招生的影响,但是对血管结构和背景都会有影响。第二,Hessian matrix对梯度很敏感,所以尖锐的边界会影响分割结果。

2.2 Marching filtering method

Marching filtering method假设血管横截面的强度具有Guassian-like剖面。line detector从不同的方向评估沿固定长度线通过目标像素的平均强度。

2.3  Mathematical morphology method

Mathematical morphology operation通常被用作管状结构提取的预处理。

2.4 Minim

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值