#Python语种检测项目数据来源:
#https://blog.csdn.net/btujack/article/details/80643211
import re #用正则表达式,去掉噪声数据
from sklearn.feature_extraction.text import CountVectorizer #抽取出来有用的特征啦,我们抽取1-gram和2-gram的统计特征
from sklearn.model_selection import train_test_split #sklearn自带的分割函数。
from sklearn.naive_bayes import MultinomialNB #把分类器import进来并且训练
class LanguageDetector():
def __init__(self, classifier=MultinomialNB()):
self.classifier = classifier
#在降噪数据上抽取出来有用的特征啦,我们抽取1-gram和2-gram的统计特征
self.vectorizer = CountVectorizer(ngram_range=(1,2), max_features=1000, preprocessor=self._remove_noise)
def _remove_noise(self, document):
noise_pattern = re.compile("|".join(["http\S+", "\@\w+", "\#\w+"])) #\S+表示非空白字符,\@\w+表示@后面的所有字符.noise_pattern是一个删除规则
clean_text = re.sub(noise_pa
自然语言项目之Python语种检测代码实现
最新推荐文章于 2024-09-24 19:37:31 发布
该博客介绍了如何使用Python进行语种检测,通过Sklearn库的CountVectorizer抽取1-gram和2-gram特征,结合MultinomialNB分类器进行训练和预测。项目数据来源于Twitter,包括英语、法语、德语、西班牙语、意大利语和荷兰语六种语言。代码中定义了LanguageDetector类,用于数据预处理、特征抽取和模型训练,并展示了预测德语句子和模型得分的例子。
摘要由CSDN通过智能技术生成