模板:min-max容斥&离散随机变量的几何分布(洛谷P3175:[HAOI2015]按位或)

前言

见到一道神题,学会两个知识点…
都是数学。

min-max容斥

给出式子:
max ⁡ ( S ) = ∑ T ⊂ S ( − 1 ) ∣ T ∣ + 1 min ⁡ ( T ) \max(S)=\sum_{T\sub S}(-1)^{|T|+1}\min(T) max(S)=TS(1)T+1min(T)
min ⁡ ( S ) = ∑ T ⊂ S ( − 1 ) ∣ T ∣ + 1 max ⁡ ( T ) \min(S)=\sum_{T\sub S}(-1)^{|T|+1}\max(T) min(S)=TS(1)T+1max(T)
这里只给出第一个式子的证明,第二个式子的证明较为类似。
考虑最大值 max ⁡ ( S ) \max(S) max(S),它成为最小值产生贡献当且近当 T = { max ⁡ ( S ) } T=\{\max(S)\} T={max(S)},显然只会产生一次正贡献。
而对于不是最大值的元素 x ∈ S x\in S xS,设比它大的元素的个数为 k k k,那么它成为最小值产生贡献当且近当 T T T 为前 k k k 个元素的某个子集并上 { x } \{x\} {x},那么它的系数就是:
∑ i = 0 k ( k i ) ( − 1 ) i \sum_{i=0}^k\binom{k}{i}(-1)^i i=0k(ik)(1)i
二项式反演一下:
∑ i = 0 k ( k i ) ( − 1 ) i = ∑ i = 0 k ( k i ) ( − 1 ) i ( 1 ) k − i = ( 1 − 1 ) k = 0 \sum_{i=0}^k\binom{k}{i}(-1)^i=\sum_{i=0}^k\binom{k}{i}(-1)^i(1)^{k-i}=(1-1)^{k}=0 i=0k(ik)(1)i=i=0k(ik)(1)i(1)ki=(11)k=0
所以所有不是最大值的元素的贡献都是0。
那么最后西格玛的结果就是 max ⁡ ( S ) \max(S) max(S)

注意:这个式子当最小值不唯一的时候依然成立 min ⁡ ( T ) \min(T) min(T) 的含义就变为了所有并列最小值的和。但是所求的最大值必须唯一!

期望

这个东西对于期望依然是成立的,也就是:
E ( max ⁡ ( S ) ) = ∑ T ⊂ S ( − 1 ) ∣ T ∣ E ( min ⁡ ( T ) ) E(\max(S))=\sum_{T\sub S}(-1)^{|T|}E(\min(T)) E(max(S))=TS(1)TE(min(T))
E ( min ⁡ ( S ) ) = ∑ T ⊂ S ( − 1 ) ∣ T ∣ E ( max ⁡ ( T ) ) E(\min(S))=\sum_{T\sub S}(-1)^{|T|}E(\max(T)) E(min(S))=TS(1)TE(max(T))
把定义从元素大小的求值改为期望的求值,完全不影响上面的证明过程,所以还是对的。

拓展:kth_max

max ⁡ ( S ) k t h = ∑ T ⊂ S ( ∣ T ∣ − 1 k − 1 ) ( − 1 ) ∣ T ∣ − k min ⁡ ( T ) \max(S)_{kth}=\sum_{T\sub S}\binom{|T|-1}{{k-1}}(-1)^{|T|-k}\min(T) max(S)kth=TS(k1T1)(1)Tkmin(T)
并不会证
还是挺好记的, k = 1 k=1 k=1的时候就退化成正常的min-max容斥了。

离散随机变量的几何分布

离散变量:值域不连续的变量。比如我们最常见的“求期望次数”,值域就是自然数。

给出一个离散变量 x x x,其分布概率满足:
P ( x = k ) = ( 1 − p ) k − 1 p P(x=k)=(1-p)^{k-1}p P(x=k)=(1p)k1p
其中 p p p 是一个 [ 0 , 1 ] [0,1] [0,1] 的常量。
可以把 p p p 理解成做成某件事的概率,那么 P ( x = k ) P(x=k) P(x=k) 就是恰好用 k k k 次做成这件事的概率。

证明一

现在求这个变量的期望,也就是:
∑ i = 1 ∞ P ( x = i ) i \sum_{i=1}^{\infty}P(x=i)i i=1P(x=i)i
q = 1 − p q=1-p q=1p,那么我们就要求:
∑ i = 1 ∞ i × q i − 1 × ( 1 − q ) = ( 1 − q ) ∑ i = 1 ∞ i × q i − 1 \sum_{i=1}^{\infty}i\times q^{i-1}\times(1-q)=(1-q)\sum_{i=1}^{\infty}i\times q^{i-1} i=1i×qi1×(1q)=(1q)i=1i×qi1
s = ∑ i = 1 ∞ i × q i − 1 s=\sum_{i=1}^{\infty}i\times q^{i-1} s=i=1i×qi1,则有:
q s − s = ∑ i = 1 ∞ ( i × q i ) − ∑ i = 1 ∞ ( i × q i − 1 ) qs-s=\sum_{i=1}^{\infty}(i\times q^{i})-\sum_{i=1}^{\infty}(i\times q^{i-1}) qss=i=1(i×qi)i=1(i×qi1)
= ∑ i = 2 ∞ ( ( i − 1 ) × q i − 1 ) − ∑ i = 1 ∞ ( i × q i − 1 ) = − ∑ i = 1 ∞ q i − 1 = − 1 1 − q =\sum_{i=2}^{\infty}((i-1)\times q^{i-1})-\sum_{i=1}^{\infty}(i\times q^{i-1})=-\sum_{i=1}^{\infty}q^{i-1}=-\frac{1}{1-q} =i=2((i1)×qi1)i=1(i×qi1)=i=1qi1=1q1
所以
s = − 1 ( 1 − q ) ( q − 1 ) s=-\frac{1}{(1-q)(q-1)} s=(1q)(q1)1
所以原式就是:
∑ i = 1 ∞ i × q i − 1 × ( 1 − q ) = ( 1 − q ) s = − 1 q − 1 = 1 p \sum_{i=1}^{\infty}i\times q^{i-1}\times(1-q)=(1-q)s=-\frac{1}{q-1}=\frac{1}{p} i=1i×qi1×(1q)=(1q)s=q11=p1

证明二

还有一种更加阳间的证明方法:
回到现实意义: w w w 表示做成该件事的期望次数。
考虑做一次做成或者做不成,就有:
w = p × 1 + ( 1 − p ) × ( w + 1 ) w=p \times1+(1-p)\times (w+1) w=p×1+(1p)×(w+1)
移项,得:
w = 1 p w=\frac{1}{p} w=p1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值