离散型随机变量及其分布律(习题部分)

例一·抛掷骰子

将一颗骰子抛掷两次,以 X X X表示两次中得到的小的点数,试求 X X X的分布律.

思路

Y 1 , Y 2 Y_1,Y_2 Y1,Y2表示第一次、第二次投掷时骰子出现的点数,样本空间就可以表示为 S = { ( y 1 , y 2 ) ∣ y 1 = 1 , 2 , . . . , 6 ; y 2 = 1 , 2 , . . . 6 } S=\{(y_1,y_2)|y_1=1,2,...,6;y_2=1,2,...6\} S={(y1,y2)y1=1,2,...,6;y2=1,2,...6}共有 6 × 6 = 36 6×6=36 6×6=36个样本点.
X = m i n { Y 1 , Y 2 } X=min\{Y_1,Y_2\} X=min{Y1,Y2}所有可能取值为 1 , 2 , 3 , 4 , 5 , 6 1,2,3,4,5,6 1,2,3,4,5,6,事件 { X = k } ( k = 1 , 2 , 3 , 4 , 5 , 6 ) \{X=k\}(k=1,2,3,4,5,6) {X=k}(k=1,2,3,4,5,6)发生不外乎以下三种情况:
( 1 ) Y 1 = k 且 Y 2 = k + 1 , k + 2 , . . . 6 ( 共 有 6 − k 个 点 ) ; (1)Y_1=k且Y_2=k+1,k+2,...6(共有6-k个点); (1)Y1=kY2=k+1,k+2,...6(6k);
( 2 ) Y 2 = k 且 Y 1 = k + 1 , k + 2 , . . . 6 ( 共 有 6 − k 个 点 ) ; (2)Y_2=k且Y_1=k+1,k+2,...6(共有6-k个点); (2)Y2=kY1=k+1,k+2,...6(6k);
( 3 ) Y 1 = k 且 Y 2 = k ( 共 有 1 点 ) ; (3)Y_1=k且Y_2=k(共有1点); (3)Y1=kY2=k(1);
因而事件共包含 ( 6 − k ) + ( 6 − k ) + 1 = 13 − 2 k (6-k)+(6-k)+1=13-2k (6k)+(6k)+1=132k个样本点.

答案

P { X = k } = 13 − 2 k 36 , k = 1 , 2 , 3 , 4 , 5 , 6 P\{X=k\}=\frac{13-2k}{36},k=1,2,3,4,5,6 P{X=k}=36132k,k=1,2,3,4,5,6

例二·保险赔偿

保险公司在一天内承保了5000张相同年龄.为期一年的寿险保单.每人一份.在合同有效期内若投保人死亡,则公司需赔付3万元.设在一年内,该年龄段的死亡率为0.0015,且各投保人是否死亡相互独立.求该公司对于这批投保人的赔付总额不超过30万元的概率(利用泊松定理计算).

思路

读题“赔付总额不超过30万元”即在投保期内投保人死亡的人数不超过 30 / 3 = 10 30/3=10 30/3=10人,设这批投保人在一年内死亡人数为 X X X,则由“各投保人是否死亡相互独立”知 X ∼ b ( 5000 , 0.0015 ) \begin{aligned}&X \sim b(5000,0.0015)\\\end{aligned} Xb(5000,0.0015)从而所求的概率就为 P { X ≤ 10 } = ∑ k = 0 10 C 5000 k ( 0.0015 ) k ( 1 − 0.0015 ) 5000 − k \begin{array}{l} P\{X \leq 10\}=\sum_{k=0}^{10} C_{5000}^{k}(0.0015)^{k}(1-0.0015)^{5000-k} \\\end{array} P{X10}=k=010C5000k(0.0015)k(10.0015)5000k
若用泊松近似可以认为 X ∼ π ( λ ) X \sim \pi(\lambda) Xπ(λ) ( λ = n p = 5000 × 0.0015 = 7.5 ) (\lambda=np=5000×0.0015=7.5) (λ=np=5000×0.0015=7.5),于是 P { X ≤ 10 } ≈ ∑ k = 0 10 7. 5 k e − 7.5 k ! \begin{array}{l}P\{X \leq 10\} \approx \sum_{k=0}^{10} \frac{7.5^{k} e^{-7.5}}{k !} \end{array} P{X10}k=010k!7.5ke7.5

答案

查 表 算 得 P { X ≤ 10 } ≈ 0.8622 查表算得P\{X \leq 10\} \approx 0.8622 P{X10}0.8622

例三·规则的选择

甲和乙比赛,甲的实力更强一点每一局甲赢的概率为p,这里 0.5 < p < 1. 0.5<p<1. 0.5<p<1.设各局胜负相互独立设 k k k是一正整数.问:对甲而言, 2 k − 1 局 k 胜 制 2k- 1局k胜制 2k1k有利,还是 2 k + 1 局 k + 1 胜 制 2k+ 1局k + 1胜制 2k+1k+1有利?

思路

X n X_n Xn表示前 n n n局甲赢的局数,则 X ∼ B ( n , p ) \begin{aligned}&X \sim B(n,p)\\\end{aligned} XB(n,p),令 w k w_k wk表示 2 k − 1 2k-1 2k1局中最终甲赢的概率.
w k = P ( X 2 k − 1 ≥ k ) w_{k}=P\left(X_{2 k-1} \geq k\right) wk=P(X2k1k).令 q = 1 − p q=1-p q=1p
由全概率公式
w k + 1 = P ( X 2 k + 1 ≥ k + 1 ) = ∑ i = 0 2 k − 1 P ( X 2 k − 1 = i ) P ( X 2 k + 1 ≥ k + 1 ∣ X 2 k − 1 = i ) \begin{aligned} w_{k+1} &=P\left(X_{2 k+1} \geq k+1\right) \\ &=\sum_{i=0}^{2 k-1} P\left(X_{2 k-1}=i\right) P\left(X_{2 k+1} \geq k+1 | X_{2 k-1}=i\right) \end{aligned} wk+1=P(X2k+1k+1)=i=02k1P(X2k1=i)P(X2k+1k+1X2k1=i)
后面的条件概率如何计算? P ( X 2 k + 1 ≥ k + 1 ∣ X 2 k − 1 = i ) = { 0 ; i ≤ k − 2 p 2 ; i = k − 1 1 − q 2 ; i = k 1 ; i ≥ k + 1 w k + 1 = p 2 P ( X 2 k − 1 = k − 1 ) + ( 1 − q 2 ) P ( X 2 k − 1 = k ) + P ( X 2 k − 1 ≥ k + 1 ) = w k + p 2 P ( X 2 k − 1 = k − 1 ) − q 2 P ( X 2 k − 1 = k ) = w k + p 2 C 2 k − 1 k − 1 p k − 1 q k − q 2 C 2 k − 1 k p k q k − 1 = w k + C 2 k − 1 k − 1 p k q k ( p − q ) > w k \begin{array}{l} P\left(X_{2 k+1} \geq k+1 | X_{2 k-1}=i\right)=\left\{\begin{array}{l} 0 ; \quad i \leq k-2 \\ p^{2} ; \quad i=k-1 \\ 1-q^{2} ; \quad i=k \\ 1 ; \quad i \geq k+1 \end{array}\right. \\ \begin{aligned} w_{k+1} &=p^{2} P\left(X_{2 k-1}=k-1\right)+\left(1-q^{2}\right) P\left(X_{2 k-1}=k\right) \\ &+P\left(X_{2 k-1} \geq k+1\right) \\ &=w_{k}+p^{2} P\left(X_{2 k-1}=k-1\right)-q^{2} P\left(X_{2 k-1}=k\right) \\ &=w_{k}+p^{2} C_{2 k-1}^{k-1} p^{k-1} q^{k}-q^{2} C_{2 k-1}^{k} p^{k} q^{k-1} \\ &=w_{k}+C_{2 k-1}^{k-1} p^{k} q^{k}(p-q)>w_{k} \end{aligned} \end{array} P(X2k+1k+1X2k1=i)=0;ik2p2;i=k11q2;i=k1;ik+1wk+1=p2P(X2k1=k1)+(1q2)P(X2k1=k)+P(X2k1k+1)=wk+p2P(X2k1=k1)q2P(X2k1=k)=wk+p2C2k1k1pk1qkq2C2k1kpkqk1=wk+C2k1k1pkqk(pq)>wk

答案

对 甲 来 说 2 k + 1 局 k + 1 胜 制 有 利 . 对甲来说2k+ 1局k + 1胜制有利. 2k+1k+1.

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值