实测 | 揭秘如何完成3分钟标注400个框的点云连续帧数据

本文介绍了一种在自动驾驶场景中广泛应用的数据处理技术——3D点云连续帧标注。通过模型追踪功能,能够高效准确地描绘出视频场景中目标物体的形状及运动轨迹。借助平台内置的AI辅助工具,标注效率大幅提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点云连续帧

3D点云连续帧标注是自动驾驶场景中应用较为广泛的一种数据处理类型,是将视频场景通过3D图像来精准描绘出需要标注的对象的形状、运动轨迹等信息,通过对每一帧点云数据中的目标物体进行连续标注。

单物体标注

对单个物体进行标注,可通过三点来定位物体,AI自动收敛功能可以使包围盒自动贴合物体。

在这里插入图片描述

多物体模型追踪标注

使用模型,可将所有感兴趣的的目标做预处理,配置相关参数,点击【跑模型】,第1帧的物体便会全部识别出结果。

在这里插入图片描述
虽然我们可以继续使用复制功能,将当前帧所有结果复制到下一帧,但连续帧物体位置移动变化大,复制几帧后,框与实际物体的位置偏差会变大,需要大量时间来调整每个框的位置,并不能提高标注效率。

这时便可用到平台内置的模型追踪功能,模型将跟踪物体运动轨迹来实现连续帧的标注。

在这里插入图片描述

通过模型跑出的结果,大部分都相当精确,只需要微调即可。在实际生产环境中测试,平台通过优化功能+交互+AI辅助工具,使其标注速度提升超10倍。

普通标注 VS AI辅助标注

在这里插入图片描述
倍赛数据标注平台的点云标注工具搭载了Xtreme1开源项目的内核。Xtreme1是全球首个开源多模态训练数据平台。

请关注GitHub repo
https://github.com/basicai/xtreme1/

### 如何标注用于目标检测的数据集 #### 方法与工具的选择 为了为目标检测准备高质量的数据集,选择合适的标注方法和工具至关重要。开源和基于云的工具都是可行选项,不过在线版本通常更适合团队协作,因其提供了更好的共享和管理功能[^2]。 #### 使用BasicAI Cloud进行数据标注 以BasicAI Cloud为例,这是一个广泛应用于目标检测研究的平台。用户仅需访问<https://app.basic.ai>并注册一个免费账户即可开始使用。该平台支持多种类型的标注任务,包括边界(Bounding Box)、多边形(Polygon)等,适用于不同的应用场景需求。 #### 数据标注的具体流程 1. **创建项目** 登录后,在平台上新建一个项目,指定项目的名称以及描述信息。 2. **上传图片** 将待标注的图像批量导入至该项目中。确保所选图像是清晰且具有代表性,以便于后续模型的学习效果。 3. **设置标签类别** 定义好本次任务所需的物体分类列表,比如行人、车辆、交通标志等。对于口罩佩戴检测,则应设立“戴口罩”、“未戴口罩”的类别区分[^1]。 4. **执行标注操作** 对每一幅图像内的各个对象绘制相应的几何形状来标记位置范围,并关联对应的类目名。此过程中要保持一致性,遵循预先设定的标准指南来进行精确描绘。 5. **审核与修正** 经过初步完成后的标注结果应当接受严格的质量控制审查,由经验丰富的人员复查可能存在的错误或不准确之处加以改正完善。 6. **导出标注文件** 当全部样本均已完成合格的标注之后,可以按照特定格式要求打包下载这些带有真值信息的结果文档供下一步建模训练调用。 ```python import yaml def save_labels_to_yaml(labels, file_path): with open(file_path, &#39;w&#39;) as f: yaml.dump(labels, f) labels = { &#39;train&#39;: &#39;./images/train&#39;, &#39;val&#39;: &#39;./images/val&#39;, &#39;nc&#39;: 2, &#39;names&#39;: [&#39;with_mask&#39;, &#39;without_mask&#39;] } save_labels_to_yaml(labels, &#39;mask_detection.yaml&#39;) ``` 上述Python脚本展示了如何保存已标注好的标签到YAML文件中去,这对于像YOLO这样的架来说是非常重要的一步,因为它指定了数据集中各类别的映射关系及其存储路径[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值