Face Recognition(一 DCNNs)

DDFD是一种基于AlexNet改进的深度学习网络模型,由雅虎公司在2015年提出。该模型可在不同角度、遮挡及光照条件下进行人脸检测,适用于不受限的人脸检测场景。网络包含5个卷积层和3个全连接层,并直接从最后一个全连接层输出结果。
摘要由CSDN通过智能技术生成

文章目录

2015 DDFD

  • Multi-viewface detection using deep convolutional neural networks
  • DDFD(Deep Dense Face Detector)是一种基于AlexNet进行微调(finetune)改进的一种深度学习的网络模型。是雅虎公司2015年的作品,可以实现基于多角度,遮挡,关照下的人脸检测,一种unconstrain的人脸检测算法。
  • 5个卷积层,3个全连接层组成,在最后一个全连接层直接输出,没有经过SVM分类器处理
  • 网络结构
    在这里插入图片描述
  • 结果
    在这里插入图片描述
    在这里插入图片描述
One of the main challenges in feature learning using Deep Convolutional Neural Networks (DCNNs) for large- scale face recognition is the design of appropriate loss func- tions that enhance discriminative power. Centre loss pe- nalises the distance between the deep features and their cor- responding class centres in the Euclidean space to achieve intra-class compactness. SphereFace assumes that the lin- ear transformation matrix in the last fully connected layer can be used as a representation of the class centres in an angular space and penalises the angles between the deep features and their corresponding weights in a multiplicative way. Recently, a popular line of research is to incorporate margins in well-established loss functions in order to max- imise face class separability. In this paper, we propose an Additive Angular Margin Loss (ArcFace) to obtain highly discriminative features for face recognition. The proposed ArcFace has a clear geometric interpretation due to the ex- act correspondence to the geodesic distance on the hyper- sphere. We present arguably the most extensive experimen- tal evaluation of all the recent state-of-the-art face recog- nition methods on over 10 face recognition benchmarks in- cluding a new large-scale image database with trillion level of pairs and a large-scale video dataset. We show that Ar- cFace consistently outperforms the state-of-the-art and can be easily implemented with negligible computational over- head. We release all refined training data, training codes, pre-trained models and training logs 1 , which will help re- produce the results in this paper
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值