Tensorflow实现自编码器

自编码器是一种无监督学习方法,通过编码和解码过程期望输入和输出保持一致,利用高阶特征重构数据。在TensorFlow中,我们可以构建具有隐藏层的自编码器,用于数据降维或特征提取。为了防止恒等映射,通常会对编码信号施加约束,如降维或稀疏性。自编码器的变种包括稀疏自编码器、去噪自编码器和深度自编码器,分别用于不同场景的学习任务。下面的内容将展示如何用TensorFlow实现一个简单的自编码器模型。
摘要由CSDN通过智能技术生成

自编码器(AutoEncoder),使用自身的高阶特征编码自己。是一种无监督学习,即不需要标注数据就可以对数据进行一定程度的学习。就是使用自编码器将输入信号x变成编码信号y,然后再使用解码器将编码信号y转换成输出信号x'。特点:

  1. 期望输入和输出一致
  2. 使用高阶特征来重构自己,而不是简单的复制

这里只关心中间的编码信号,为了防止xx'变成恒等映射(没有抽象学习出图像的高阶特征,而是进行了复制),必须对中间的编码信号y做一些约束。

在一定情况下,可以将编码器看成是特征提取,因为当我们使用编码信号可以恢复出原始信号的时候,说明编码信号已经承载了原始信号的大部分特征。


自编码器是用神经网络进行表示的,为了实现复原,自编码器的输入和输出在结构上是相同的,


7239122-26e5d5f512e5bb9a.png
图a 自编码器

刚才说到了编码信号必须加一些约束,从数据维度看,常见有两种情况:

  1. 隐层维度<输入数据维度,则从输入层到隐层是一种降维操作,使用更小的维度去描述原始数据而尽量不减少数据损失
  2. 隐层维度>输入数据维度,当约束隐层的表达尽量稀疏时,可以进行特征的稀疏表达,有点像特征选择

针对不同的问题,出现了很多自编码器的变种:

  1. 稀疏自编码器,高维而稀疏的表达是好的,为了仿照人类神经元的活跃程度(人类神经系统在某一刺激下,大多数神经元是静默的,只有少部分被激活),在数学上可以使用添加相对熵最为惩罚项来实现
  2. 降噪自编码器,从一个被污染的原始数据中编码、解码后恢复出真正的原始数据。说白了就是使网络学到的特征具有强的鲁棒性。
  3. 堆叠自编码器(Stacked Auto_Encoder),先训练出一个自编码器,然后将该编码器的编码信号作为原始数据(去掉输出层,就是将上图a中Output Laye层去掉),再训练一个自编码器,如此迭代下去。通过更深层次地逐层学习原始数据的多种表达,每一层都以前一层为基础,但更加抽象。这个思路有点像深度神经网络。

下面是一个用tensorflow实现的具有一个隐层的自编码器

# _*_ coding:utf-8 _*_

import numpy as np
import sklearn.preprocessing as prep
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

# Xaiver初始化器
def xavier_init(fan_in, fan_out, constant=1):
    low = -constant * np.sqrt(6.0 / (fan_in + fan_out))
    high = constant * np.sqrt(6.0 / (fan_in + fan_out))
    return tf.random_uniform((fan_in, fan_out),
                             minval=low, maxval=high,
                             dtype=tf.float32)

# 去噪自编码器
class AdditiveGaussianNoiseAutoencoder(object):
    def __init__(self, n_input, n_hidden, transfer_function=tf.nn.softplus,
                 optimizer=tf.train.AdamOptimizer(), scale=0.1):
        self.n_input = n_input
        self.n_hidden = n_hidden
        self.transfer = transfer_function
        self.scale = tf.placeholder(tf.float32)
        self.training_scale = scale
        network_weights = self._initialize_weights()
        self.weights = network_weights

        # 网络结构
        self.x = tf.placeholder(tf.float32, [None, self.n_input])
        self.hidden = self.transfer(tf.add(tf.matmul(self.x + scale * tf.random_normal((n_input, )),
                                                     self.weights['w1']),
                                           self.weights['b1']))
        self.reconstruction = tf.add(tf.matmul(self.hidden,
                                               self.weights['w2']),
                                     self.weights['b2'])

        # 损失函数
        self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction,
                                                           self.x),
                                               2.0))
        self.optimizer = optimizer.minimize(self.cost)

        init = tf.global_variables_initializer()
        self.sess = tf.Session()
        self.sess.run(init)

    def _initialize_weights(self):
        all_weights = dict()
        all_weights['w1'] = tf.Variable(xavier_init(self.n_input,
                                                    self.n_hidden))
        all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden],
                                                 dtype=tf.float32))
        all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input],
                                                 dtype=tf.float32))
        all_weights['b2'] = tf.Variable(tf.zeros([self.n_input],
                                                 dtype=tf.float32))
        return all_weights

    def partial_fit(self, x):
        cost, opt = self.sess.run((self.cost, self.optimizer),
                                  feed_dict={self.x: x, self.scale: self.training_scale})
        return cost

    def calc_total_cost(self, x):
        return self.sess.run(self.cost,
                             feed_dict={self.x: x, self.scale: self.training_scale})

    #  获取数据的高阶特征(返回自编码器隐含层的输出结果)
    def transform(self, x):
        return self.sess.run(self.hidden,
                             feed_dict={self.x: x, self.scale: self.training_scale})

    # 将高阶特征复原为原始数据
    def generate(self, hidden=None):
        if hidden is None:
            hidden = np.random.normal(size=self.weights['b1'])
        return self.sess.run(self.reconstruction,
                             feed_dict={self.hidden: hidden})

    # 复原
    def reconstruct(self, x):
        return self.sess.run(self.reconstruction,
                             feed_dict={self.x: x, self.scale: self.training_scale})

    def getWeights(self):
        return self.sess.run(self.weights['w1'])

    def getBiases(self):
        return self.sess.run(self.weights['b1'])


mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

# 标准化数据
def standard_scale(X_train, X_test):
    preprocessor = prep.StandardScaler().fit(X_train)
    X_train = preprocessor.transform(X_train)
    X_test = preprocessor.transform(X_test)
    return X_train, X_test

# 获取随机block数据
def get_random_block_form_data(data, batch_size):
    start_index = np.random.randint(0, len(data) - batch_size)
    return data[start_index:(start_index + batch_size)]

X_train, X_test = standard_scale(mnist.train.images, mnist.test.images)
n_samples = int(mnist.train.num_examples)
training_epochs = 20
batch_size = 128
display_step = 1
autoencoder = AdditiveGaussianNoiseAutoencoder(n_input=784,
                                               n_hidden=200,
                                               transfer_function=tf.nn.softplus,
                                               optimizer=tf.train.AdamOptimizer(learning_rate=0.001),
                                               scale=0.01)
for epoch in range(training_epochs):
    avg_cost = 0
    total_batch = int(n_samples / batch_size)
    for i in range(total_batch):
        batch_xs = get_random_block_form_data(X_train, batch_size)

        cost = autoencoder.partial_fit(batch_xs)
        avg_cost += cost / n_samples * batch_size

    if epoch % display_step == 0:
        print('Epoch:', '%04d' % (epoch + 1), "cost=", "{:.9f}".format(avg_cost))
print("Total cost:" + str(autoencoder.calc_total_cost(X_test)))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值