一些公式/定理积累

积累一些可能会用的数学公式,有时可以作为简化计算、提升效率的小技巧。

1. Woodbury Formula

不想敲代码,直接截个wiki的图过来:
这里写图片描述

上面已经提到了这个公式的几种特殊情形,这里我们关注更简单的一种。当A是n阶单位阵,C是k阶单位阵时,有:

(In+UV)1=InU(Ik+VU)1V

然后呢,有什么用嘛?且看,如果 n>>k ,那我们原本要求的式子左边,是对一个n阶方阵求逆—-复杂度为 O(n3) ,现在哩,式子右边只用对一个k阶方阵求逆—-复杂度为 O(k3) ,然后再加上矩阵乘法约为 O(nk2) 的复杂度,对n而言,计算复杂度瞬间从立方下降为线性有木有!

2. Nystrom Method

这里写图片描述
可以用来计算特征向量,可以看到,Nystrom把对 n 阶矩阵的特征分解问题,转化为对l阶矩阵的特征分解问题,大大降低了计算复杂度。实际上,谱聚类的一种大规模扩展方式,就是利用Nystrom方法。

3. 一个不等式

当z>0时,有 z1+logz 成立,且在z=1时取等号。

4. 闵可夫斯基不等式

minkowski

5. Holder不等式

holder

6. Ky Fan Theorem

i=1kσi(L)=minFRn×c,FTF=IcTr(FTLF)

[ref]: Fan K. On a Theorem of Weyl Concerning Eigenvalues of Linear Transformations [J]. Proc Natl Acad Sci USA, 1949, 35(11):652-655.

7. Eckart-Young-Mirsky theorem

n阶矩阵A(rank>p)的rank-p近似为:

A=λ1f1fT1+λ2f2fT2+...+λpfpfTp
这里, λi 是第i大的特征值, fi 是对应的特征向量。

[ref]: Eckart C, Young G. The approximation of one matrix by another of lower rank[J]. Psychometrika, 1936, 1(3):211-218.

8. Von-Neumann successive projection lemma

For finding the closest intersection of sub-spaces…
Actually, the Von-Neumann lemma applies only to linear subspaces. The extension to convex subspaces involves a “deflection” component described by Dykstra [2].

[ref]: [1] Von Neumann J. Functional Operators. II. The Geometry of Orthogonal Spaces.[J]. Princeton University Press Princeton N J, 1950.
[2] Richard L. Dykstra. An Algorithm for Restricted Least Squares Regression[J]. Journal of the American Statistical Association, 1983, 78(384):837-842.

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值