深度学习之路=====7=====>>SqueezeNet(tensorflow2)

前面学习了通过加深网络和加宽网络来改进模型质量,提高模型精度的深度学习backbone模型(LeNet,VGGNet,AlexNet,GoogleNet,ResNet),这里介绍如何使网络更快,结构更轻量化的改进深度神经网络模型之一————SqueezeNet,它能够在ImageNet数据集上达到AlexNet近似的效果,但是参数比AlexNet少50倍。
SqueezeNet 的主要思想如下:

  • 多用 1x1 的卷积核,而少用 3x3 的卷积核。因为 1x1 的好处是可以在保持 feature map size 的同时减少 channel,使模型参数减少为原来的1/9
  • 在用 3x3 卷积的时候尽量减少 channel 的数量,从而减少参数量。
  • 延后用 pooling,因为 pooling 会减小 feature map size,延后用 pooling, 这样可以使 size 到后面才减小,而前面的层可以保持一个较大的 size,更大的size保留了更多的信息,可以提高分类准确率,缺点是会增加网络的计算量。
    基于上面的思想, 研究人员提出了 fire module,其结构如下:
    在这里插入图片描述
    SqueezeNet模型结构采用如下结构:
    在这里插入图片描述
import tensorflow as tf
import os
from tensorflow.keras.layers import *
from tensorflow.keras import Model
import numpy as np
class FireBlock(Model):
    def __init__(self,s_filters_num,e_filters_num):
        super().__init__()
        self.squeeze=Conv2D(filters=s_filters_num,kernel_size=1,padding='same',activation='relu')
        self.expand_1=Conv2D(filters=e_filters_num,kernel_size=1,padding='same',activation='relu')
        self.expand_3=Conv2D(filters=e_filters_num,kernel_size=3,padding='same',activation='relu')
    def call(self,x):
        x=self.squeeze(x)
        x1=self.expand_1(x)
        x2=self.expand_3(x)
        y=tf.concat([x1,x2],-1)
        return y
class SqueezeNet(Model):
    def __init__(self):
        super().__init__()
        self.c1=Conv2D(filters=96,kernel_size=7,padding='same',strides=2,activation='relu')
        self.p1=MaxPooling2D(pool_size=(3,3),strides=2)
        self.f1=FireBlock(16,64)
        self.f2=FireBlock(16,64)
        self.f3=FireBlock(32,128)
        self.p2=MaxPooling2D(pool_size=(3,3),strides=2)
        self.f4=FireBlock(32,128)
        self.f5=FireBlock(48,192)
        self.f6=FireBlock(48,192)
        self.f7=FireBlock(64,256)
        self.p3=MaxPooling2D(pool_size=(3,3),strides=2)
        self.f8=FireBlock(64,256)
        self.c4=Conv2D(filters=1000,kernel_size=1,padding='same',activation='relu')
        self.p4=GlobalAveragePooling2D()
    def call(self,x):
        x=self.c1(x)
        x=self.p1(x)
        x=self.f1(x)
        x=self.f2(x)
        x=self.f3(x)
        x=self.p2(x)
        x=self.f4(x)
        x=self.f5(x)
        x=self.f6(x)
        x=self.f7(x)
        x=self.p3(x)
        x=self.f8(x)
        x=self.c4(x)
        y=self.p4(x)
        return y
model=SqueezeNet()  

上面为基于tensorflow2.4封装好的SqueezeNet,通过加载数据集,模型编译(model.compile())后就行训练模型了,我的笔记本电脑显卡不行,我只试运行了一下,可以训练数据。
参考:
SqueezeNet详解
SqueezeNet详细解读
深度学习中的经典基础网络结构(backbone)总结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值