「ZJOI 2005」午餐「DP」

题目传送门

题解

贪心+ DP \text{DP} DP,思想巧妙。

首先确定先后顺序,不确定站在哪边。贪心策略是按吃饭时间从大到小排序,证明如下:

设按某个顺序站,第 A A A个人打饭时间为 a a a,吃饭时间为 b b b;第 B ( A &lt; B ) B(A&lt;B) B(A<B)人打饭时间为 c c c,吃饭时间为 d d d b &lt; d b &lt; d b<d

t 1 = m a x ( a + b , a + c + d ) = a + m a x ( b , c + d ) = a + c + d t_1=max(a+b, a+c+d) = a + max(b, c+d) = a + c + d t1=max(a+b,a+c+d)=a+max(b,c+d)=a+c+d

t 2 = m a x ( c + d , a + b + c ) = c + m a x ( b + a , 0 + d ) = a + b + c t_2=max(c+d, a+b+c) = c + max(b+a, 0+d) = a+b+c t2=max(c+d,a+b+c)=c+max(b+a,0+d)=a+b+c c + d c+d c+d

t 1 &gt; t 2 t_1&gt;t_2 t1>t2

得证。

然后设计 d p dp dp状态。用 f [ i ] [ j ] f[i][j] f[i][j]表示前 i i i个人, 1 1 1队打饭总时间为 j j j,最早吃完的时刻。

使用前缀和, s u m [ i ] − j sum[i]-j sum[i]j就是 2 2 2队打饭总时间,这样避免状态的冗余设计。

//Luogu P2577
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;

const int N = 201;

struct Node {
	int a, b;
	bool operator < (const Node & n2) const { return b > n2.b; }
} p[N];
int n, sum[N], f[N][N * N];
//f[i][j]:前i个人,打饭总时间j,最早吃完时刻 
void upd(int & x, const int & y) {x > y ? x = y : 0;}

int main() {
	scanf("%d", &n);
	for(int i = 1; i <= n; i ++)
		scanf("%d%d", &p[i].a, &p[i].b);
	sort(p + 1, p + n + 1);
	for(int i = 1; i <= n; i ++)
		sum[i] = sum[i - 1] + p[i].a;
	
	for(int i = 0; i <= n; i ++)
		fill(f[i], f[i] + sum[n] + 1, (1LL << 31) - 1LL);
	
	f[0][0] = 0;
	for(int i = 1; i <= n; i ++) {
		for(int j = 1; j <= sum[i]; j ++) {
			if(j >= p[i].a) upd(f[i][j], max(f[i - 1][j - p[i].a], j + p[i].b));
			upd(f[i][j], max(f[i - 1][j], (sum[i] - j) + p[i].b));
		}
	}
	int ans = (1LL << 31) - 1LL;
	for(int i = 1; i <= sum[n]; i ++) 
		upd(ans, f[n][i]);
	printf("%d\n", ans);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值