深度学习第2周:用PyTorch进行Mnist手写数字识别

用PyTorch进行Mnist手写数字识别

本周选择的任务跟上周大同小异,区别在于深度学习框架的选择。
除了跑通pytorch代码外,本周目标还有两个:

  1. 再次明确深度学习类程序的架构
  2. 了解pytorch的基本框架

深度学习程序框架

  1. 数据准备
  2. 模型网络结构设计
  3. 模型训练
  4. 模型评估和测试
  5. 模型优化
  6. 部署应用

其中,数据准备
在该阶段要对原始数据进行处理,以达到模型训练的统一标准, 如果图像跟训练集有差异,那么往往会出现训练效果不好的情况。
如果最终目标是实现自己手写数字拍照识别, 那么

  1. 图片对比度调整:将照片对比度增强, 尽量做到黑白分明, 背景为纯白,数字为纯黑是最理想的情况
  2. 图片去噪:对图片中的噪点进行去除或者过滤
  3. 数字图像分割:检测数字边缘,确定每个数字的位置
  4. 数字图片整理:处理成与训练集一致的28*28灰度图
  5. 读入训练集和测试集

该阶段在Mnist数据集中已经进行过预处理,所以涉及的工作就是读入数据及初始化
如果是真实项目, 可能把训练和实际应用分开。而且图片预处理的工作涉及到cv2, 暂时不在我能力范围。

优化和部署也暂不涉及

这段代码可以分为以下几个模块:

主程序初始化

定义超参数
BATCH_SIZE = 512 表示每次训练模型时,使用的数据批次大小为512。每次训练和测试时,会将数据集分成若干个大小为 BATCH_SIZE 的批次进行处理。这个参数的大小会影响模型的训练速度和准确率,一般来说,批次大小越大,训练速度越快,但是可能会导致模型过拟合;批次大小越小,训练速度越慢,但是可能会导致模型欠拟合。

EPOCHS = 20 表示训练模型的总训练次数为20。在这个代码中,每次训练模型时,会将训练集分成若干个大小为 BATCH_SIZE 的批次进行处理,每个批次都会更新一次模型参数。训练模型的总批次数越多,模型的训练时间越长,但是可能会提高模型的准确率。一般来说,训练模型的总批次数需要根据具体的任务和数据集进行调整,以达到最佳的训练效果。

虽然代码没有明确指定训练迭代的总次数,但我们可以通过将每个 epoch 中的批次数乘以 epoch 数来计算。在这种情况下,批次大小为 512,MNIST 数据集中有 60,000 个训练样本。因此,每个 epoch 有 60,000 / 512 = 117.1875 个批次。将其乘以 epoch 数(20)得到总共约为 2344 次训练迭代

#用pytorch进行mnist手写数字识别
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms

#定义超参数
BATCH_SIZE = 512         #大概需要2G的显存
EPOCHS = 20              #总共训练批次
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")   #若能使用cuda则使用cuda

数据加载模块:

使用torch.utils.data.DataLoader加载MNIST数据集,分别对训练集和测试集进行加载和预处理。
torch.utils.data.DataLoader是PyTorch中用于加载数据的工具类。
它可以将数据集转换为可迭代的对象,以便在训练模型时逐批加载数据。
在给定的代码中,train_loader和test_loader都是使用torch.utils.data.DataLoader加载MNIST数据集的示例。
具体来说,train_loader和test_loader都是一个元组,其中
第一个元素是datasets.MNIST对象,
第二个元素是批次大小。
datasets.MNIST对象是一个数据集对象,它包含MNIST数据集的图像和标签,并且可以使用transforms模块中的函数进行预处理。
在训练模型时,可以使用train_loader逐批加载训练数据,使用test_loader逐批加载测试数据。

datasets.MNIST是PyTorch中用于加载MNIST数据集的工具类。它有三个参数:

root:数据集的根目录。
如果数据集已经下载,则可以将其设置为已下载数据集的路径。
如果数据集未下载,则可以将其设置为要下载数据集的路径。默认值为’./data’。

train:一个布尔值,指示是否加载训练集。
如果为True,则加载训练集。如果为False,则加载测试集。默认值为True。

transform:一个可选的数据预处理函数或变换。
如果指定了此参数,则在加载数据集时将应用该函数或变换。默认值为None。

在给定的代码中,
datasets.MNIST的root参数设置为’data’,
train参数设置为True,
transform参数设置为一个transforms.Compose对象,
该对象包含两个变换:
transforms.ToTensor()和
transforms.Normalize((0.1307,), (0.3081,))。

transforms.ToTensor()是一个数据预处理函数,用于将图像转换为张量,并将像素值缩放到[0, 1]之间。
在给定的代码中,transforms.ToTensor()被应用于MNIST数据集的transform参数中,以便将数据集转换为适合训练模型的形式。
具体来说,transforms.ToTensor()将图像的每个像素值除以255,从而将像素值缩放到[0, 1]之间,并将图像转换为一个形状为(1, 28, 28)的张量,其中1表示通道数,28表示图像的高度,28表示图像的宽度。
这样做的目的是为了将数据集转换为适合训练模型的形式,以便提高模型的训练效果。

transforms.ToTensor()将图像转换为张量,并将像素值缩放到[0, 1]之间。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: PyTorch是一种深度学习框架,可以用来实现MNIST手写数字识别MNIST是一个常用的数据集,包含了大量手写数字的图像和对应的标签。我们可以使用PyTorch来构建一个卷积神经网络模型,对这些图像进行分类,从而实现手写数字识别的功能。具体实现过程可以参考PyTorch官方文档或相关教程。 ### 回答2: MNIST是一个经典的手写数字识别问题,其数据集包括60,000个训练样本和10,000个测试样本。PyTorch作为深度学习领域的热门工具,也可以用来实现MNIST手写数字识别。 第一步是加载MNIST数据集,可以使用PyTorch的torchvision.datasets模块实现。需要注意的是,MNIST数据集是灰度图像,需要将其转换为标准的三通道RGB图像。 ```python import torch import torchvision import torchvision.transforms as transforms # 加载数据集 train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]), download=True) test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]), download=True) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False) ``` 第二步是构建模型。在MNIST手写数字识别问题中,可以选择使用卷积神经网络(CNN),其可以捕获图像中的局部特征,这对于手写数字识别非常有用。 ```python import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3) self.conv2 = nn.Conv2d(32, 64, kernel_size=3) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(64*12*12, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, kernel_size=2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output model = Net() ``` 第三步是定义优化器和损失函数,并进行训练和测试。在PyTorch中,可以选择使用交叉熵损失函数和随机梯度下降(SGD)优化器进行训练。 ```python import torch.optim as optim # 定义优化器和损失函数 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # 训练模型 for epoch in range(10): running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 # 测试模型 correct = 0 total = 0 with torch.no_grad(): for data in test_loader: images, labels = data outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total)) ``` 最后,可以输出测试集上的准确率。对于这个模型,可以得到大约98%的准确率,具有很好的性能。 ### 回答3: PyTorch是一个常用的深度学习框架,通过PyTorch可以方便地实现mnist手写数字识别mnist手写数字数据集是机器学习领域的一个经典数据集,用于训练和测试数字识别算法模型。以下是PyTorch实现mnist手写数字识别的步骤: 1. 获取mnist数据集:可以通过PyTorch提供的工具包torchvision来获取mnist数据集。 2. 数据预处理:将数据集中的手写数字图片转换为张量,然后进行标准化处理,使得每个像素值都在0到1之间。 3. 构建模型:可以使用PyTorch提供的nn模块构建模型,常用的模型包括卷积神经网络(CNN)和全连接神经网络(FNN)。例如,可以使用nn.Sequential()函数将多个层逐一堆叠起来,形成一个模型。 4. 训练模型:通过定义损失函数和优化器,使用训练数据集对模型进行训练。常用的损失函数包括交叉熵损失函数和均方误差损失函数,常用的优化器包括随机梯度下降(SGD)和Adam。 5. 测试模型:通过测试数据集对模型进行测试,可以用测试准确率来评估模型的性能。 以下是一个简单的PyTorch实现mnist手写数字识别的代码: ``` python import torch import torch.nn as nn import torch.nn.functional as F import torchvision import torchvision.transforms as transforms # 获取数据集 train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor()) # 数据加载器 train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=100, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=100, shuffle=False) # 构建模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=5) self.conv2 = nn.Conv2d(32, 64, kernel_size=5) self.fc1 = nn.Linear(1024, 256) self.fc2 = nn.Linear(256, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = x.view(-1, 1024) x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) model = Net() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 训练模型 num_epochs = 10 for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 转换为模型所需格式 images = images.float() labels = labels.long() # 前向传播和计算损失 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和更新参数 optimizer.zero_grad() loss.backward() optimizer.step() # 每100个批次输出一次日志 if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_dataset)//100, loss.item())) # 测试模型 correct = 0 total = 0 with torch.no_grad(): # 不需要计算梯度 for images, labels in test_loader: # 转换为模型所需格式 images = images.float() labels = labels.long() # 前向传播 outputs = model(images) _, predicted = torch.max(outputs.data, 1) # 统计预测正确数和总数 total += labels.size(0) correct += (predicted == labels).sum().item() print('Test Accuracy: {:.2f}%'.format(100 * correct / total)) ``` 以上就是一个基于PyTorchmnist手写数字识别的简单实现方法。需要注意的是,模型的设计和训练过程可能会受到多种因素的影响,例如网络结构、参数初始化、优化器等,需要根据实际情况进行调整和优化,才能达到更好的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值