【小白教程】将本地部署的deepseek模型接入微信

声明

本文思路来自这篇博文:【从零开始】基于本地部署DeepSeek-R1实现微信智能聊天机器人

前提

在将deepseek模型接入微信之前首先要先保证本地安装好了ollama并成功部署了deepseek,具体操作方法可以参考我的上一篇博文:在本地部署deepseek模型

准备工作

  1. NGCBot:是一款基于Hook机制的微信机器人,经过两年的更新迭代,目前功能更加面向大众,此项目会不定期维护,当然如果你有代码能力,也可以自己维护(支持Gpt,星火,千帆,混元,月之暗面,智谱,DeepSeek)源码在github上
  2. 低版本微信:高版本微信再打开项目会提示:只支持64位微信或者是当前微信版本不支持,这是因为我们电脑上安装的微信版本太新了,NGCBot需要安装3.9.10.27版本

NGCBot和微信的下载链接如下:https://pan.quark.cn/s/bc26b60912da

部署BOT

  • 将网盘中的NGCBot.zip进行解压
    在这里插入图片描述
  • 解压后双击启动器即可打开项目
    在这里插入图片描述
  • 项目会自动打开你的微信
    在这里插入图片描述
    注意:如果没有按前提中安装特定版本的微信,就会出现以下报错
    在这里插入图片描述
  • 当启动器上显示以下内容,证明已经服务已经初始化成功。
    在这里插入图片描述
    此时你登陆的微信号就作为了聊天机器人,可以用另一个账号与其对话,也可以将其拉到一个群中,通过@该微信号的方式与他交流

在这里插入图片描述
注意:此时的微信号只是被NGCBot托管,用户依然可以自由使用这个微信号与其他用户对话

将本地的deepseek模型部署到BOT中

  • 修改localDeepSeek下的deepSeekmodel中的模型名称,修改位置为NGCBot项目根目录的Config/Config.yaml文件
 	# Kimi大模型
    kiMi:
      kiMiApi: 'https://api.moonshot.cn/v1/chat/completions'
      kiMiKey: 'sk-'
    # 智谱大模型
    bigModel:
      bigModelApi: 'https://open.bigmodel.cn/api/paas/v4/chat/completions'
      bigModelKey: 'Bearer '
    # DeepSeek 模型
    deepSeek:
      deepSeekApi: 'https://api.deepseek.com/chat/completions'
      deepSeekKey: 'Bearer sk-'
    # DeepSeek 本地模型
    localDeepSeek:
      deepSeekmodel: 'deepseek-r1:14b' 

你用ollama安装的是哪个模型,deepSeekmodel就填入哪个模型

### NGCBot与Coze API的集成方法 为了实现NGCBot与Coze API的有效集成,需遵循一系列特定步骤和技术要点。首先,在开始之前确保已拥有一个有效的Coze开发者账户[^3]。 #### 准备工作 - 注册成为Coze平台上的开发者,并完成个人或企业信息验证过程。 - 获取API密钥和其他必要凭证用于后续调用请求认证授权流程。 #### 集成方案概述 构建基于Coze API驱动下的智能对话服务时,推荐采用RESTful风格的服务端架构设计模式来处理来自前端的消息传递逻辑以及后端的数据交互操作。对于想要把现有的NGC Bot迁移到新的框架下运行而言,则主要集中在两个方面的工作上: 1. **消息路由转发机制** - 修改原有bot程序中的事件监听部分代码片段,使其能够在接收到用户输入指令之后不是直接响应而是先发送给指定URL地址对应的webhook接口; 2. **数据格式转换适配层** - 开发中间件负责将不同来源之间的通信协议差异抹平,比如JSON对象字段映射关系定义等; 具体来说就是当用户的提问被提交至服务器以后会触发一次HTTP POST请求到预先配置好的WebHook URL处等待回复结果再做下一步动作。 ```python import requests from flask import Flask, request, jsonify app = Flask(__name__) COZE_API_KEY = 'your_api_key_here' WEBHOOK_URL = "https://api.coze.com/v1/webhooks/incoming" @app.route('/ngc_bot', methods=['POST']) def ngc_bot(): user_message = request.json.get('message') payload = { "text": user_message, "key": COZE_API_KEY } response = requests.post(WEBHOOK_URL, json=payload).json() bot_reply = response['response'] return jsonify({"reply": bot_reply}) if __name__ == '__main__': app.run(port=5000) ``` 此段Python脚本展示了如何创建一个简单的Flask应用程序作为中介桥梁连接起两端系统间的联系通道[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值