YOLOv8数据增强

1.找到augment.py(ultralytics/data/augment.py),修改对应内容
 # Transforms
 T = [
     A.Blur(p=0.01),
     A.MedianBlur(p=0.01),
     A.ToGray(p=0.01),
     A.CLAHE(p=0.01),
     A.RandomBrightnessContrast(p=0.0),
     A.RandomGamma(p=0.0),
     A.ImageCompression(quality_lower=75, p=0.0),
 ]
2.对应的增强库可以在albumentations找到
3.比如加雾操作,将原始代码修改为:
 # Transforms
 T = [
     A.Blur(p=0.01),
     A.MedianBlur(p=0.01),
     A.ToGray(p=0.01),
     A.CLAHE(p=0.01),
     A.RandomBrightnessContrast(p=0.0),
     A.RandomGamma(p=0.0),
     A.ImageCompression(quality_lower=75, p=0.0),
     A.RandomFog(p=xxx)
 ]
YOLOv8 中,可以通过修改配置文件或者命令行参数来禁用数据增强功能。YOLOv8 使用的数据增强通常是在训练阶段通过 `data.yaml` 文件中的设置或默认的超参数配置文件控制的。 以下是具体方法: ### 方法一:通过 YAML 配置文件调整 如果正在使用自定义的 `data.yaml` 或者超参数配置文件(如 `hyp.yaml`),可以找到其中关于数据增强的部分并将其关闭。例如,在超参数配置文件中可能有如下字段: ```yaml mosaic: 0.0 # 关闭马赛克增强 mixup: 0.0 # 关闭混合增强 copy_paste: 0.0 # 关闭复制粘贴增强 degrees: 0.0 # 图像旋转角度设为零 translate: 0.0 # 平移比例设为零 scale: 0.0 # 缩放比例设为零 shear: 0.0 # 剪切程度设为零 hsv_h: 0.0 # HSV颜色空间扰动H通道设为零 hsv_s: 0.0 # HSV颜色空间扰动S通道设为零 hsv_v: 0.0 # HSV颜色空间扰动V通道设为零 flipud: 0.0 # 上下翻转概率设为零 fliplr: 0.0 # 左右翻转概率设为零 ``` 将上述所有涉及数据增强的比例或概率都设置为 `0.0` 即可完全禁用这些增强方式[^1]。 ### 方法二:通过 CLI 参数调整 当运行训练脚本时,也可以通过命令行传递参数的方式覆盖默认的超参数配置。例如: ```bash yolo train model=yolov8n.pt data=path/to/data.yaml epochs=100 mosaic=0 mixup=0 copy_paste=0 degrees=0 translate=0 scale=0 shear=0 hsv_h=0 hsv_s=0 hsv_v=0 flipud=0 fliplr=0 ``` 以上命令会显式地禁用所有的数据增强选项。 ### 方法三:直接编辑源码 如果不希望每次都需要手动指定大量参数,则可以直接修改 YOLOv8 的源代码。进入项目的根目录后,定位到负责加载超参数的相关模块(通常是 `ultralytics/yolo/utils/torch_utils.py` 或类似的路径)。在此处强制将所有增强相关的变量初始化为零即可实现全局禁用效果。 注意:此方法适用于熟悉 Python 和项目结构的开发者,并且可能会随着官方版本更新而失效。 --- ```python # 示例代码片段展示如何动态创建无增强的 hyp 字典用于训练过程 from ultralytics import YOLO model = YOLO('yolov8n.pt') no_augment_hyp = { 'mosaic': 0.0, 'mixup': 0.0, 'copy_paste': 0.0, 'degrees': 0.0, 'translate': 0.0, 'scale': 0.0, 'shear': 0.0, 'hsv_h': 0.0, 'hsv_s': 0.0, 'hsv_v': 0.0, 'flipud': 0.0, 'fliplr': 0.0 } results = model.train(data='path/to/data.yaml', epochs=10, hyp=no_augment_hyp) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值