场景下概述:
使用ragflow知识库来谈谈ollama的黑科技!
--部署30b,还是很流畅的,但是推理能力确实比较弱
-- 部署70b,通过不断地优化参数,最大tokens,4096 tokens没问题(还部署了一个bge-m3)
--但是在ragflow中使用的时候,由于超出最大tokens,经常报内存溢出,因此给ragflow的官方提交了一个issue。官方很快就修复了,这块还是很赞的
示例演示:
原始显存需求:
权重(直接成本):8B参数 × 2字节(FP16)= 16 G
-
KV Cache(上下文缓存)
-
动态增长:
2 × 层数 × 头数 × 头维度 × 序列长度 × 批次大小 × 精度
-
以2048 tokens为例):
2(K/V) × 32层 × 32头 × 128头维度 × 2048序列长度 × 2字节 = 1.07 GB
-
-
• 总需求:16 + 1.07 ≈ 17.07 GB(远超RTX 3060的12GB上限)
Ollama的“瘦身魔法
--4-bit GGUF量化:权重显存降至8B × 0.5字节 = 4 GB
--动态卸载策略:将部分权重临时转存至CPU内存,显存占用降至6.2 GB(实测数据)
--代价:CPU-GPU数据传输使Token生成速度从45 tokens/s降至28 tokens/s。
vLLM的“显存洁癖"
-
设计原则:vllm追求极致吞吐量,拒绝任何可能影响性能的动态卸载
-
显存硬门槛:要求权重+KV Cache完全驻留GPU,导致DeepSeek-R1-8B在12GB显卡上无法启动
Ollama越级部署的三大核心技术
混合精度量化(灵活度碾压vLLM)
--层级敏感量化:对底层MLP层
使用4-bit,顶层Attention
保留6-bit(减少精度损失)
实测对比(DeepSeek-R1-8B生成任务):
量化方案 | 显存占用 | PPL(困惑度) |
Ollama混合精度 | 6.2 GB | 7.1 |
vLLM官方INT8量化 | 10.5 GB | 6.9 |
内存-CPU分级存储(vLLM的禁区)
-
策略:将FP16的
Attention
权重保留在显存,MLP权重动态加载至内存 -
技术代价:
-
每次前向传播增加5-8ms的PCIe传输延迟
-
但显存需求直降40%(从10.5GB→6.2GB)
-
自适应序列切片
显存优化效果:2048 tokens输入时,峰值显存降低32%
长文本处理:当输入超过512 tokens时,自动拆分为多段并行处理
开发者选型指南
选Ollama的场景
-
• 个人开发者/小团队:硬件有限(≤24GB显存)
-
• 需要快速验证模型效果,对延迟容忍度高
-
• 长文本生成需求(利用切片策略降低峰值显存)
选vLLM的场景
-
• 企业级API服务:需要支持高并发(≥100 QPS)
-
• 拥有A100/H800等专业显卡,追求极致吞吐量
-
• 需兼容现有Kubernetes集群调度系统
终极避坑建议
-
• 警惕“虚假越级”:部分工具声称支持低显存运行,实则大幅裁剪模型参数(如DeepSeek-8B被阉割成6B)
-
• 验证量化完整性:使用
llm-int8
工具检查Attention层是否真的保留高精度 -
• 压测保平安:对Ollama需测试长时生成的显存泄漏问题(部分版本存在累积占用bug)
关键结论
Ollama的生存逻辑:通过量化+动态卸载,将显存需求压缩至硬件的60%以下
vLLM的哲学缺陷:为追求工业级性能,放弃对资源受限场景的适配、