# vLLM 的局限:Ollama 如何用黑科技实现越级部署?

场景下概述:

使用ragflow知识库来谈谈ollama的黑科技!

--部署30b,还是很流畅的,但是推理能力确实比较弱

-- 部署70b,通过不断地优化参数,最大tokens,4096 tokens没问题(还部署了一个bge-m3)

--但是在ragflow中使用的时候,由于超出最大tokens,经常报内存溢出,因此给ragflow的官方提交了一个issue。官方很快就修复了,这块还是很赞的

示例演示:

原始显存需求:

 权重(直接成本):8B参数 × 2字节(FP16)= 16 G

  •  KV Cache(上下文缓存)

    • 动态增长:2 × 层数 × 头数 × 头维度 × 序列长度 × 批次大小 × 精度

    • 以2048 tokens为例): 2(K/V) × 32层 × 32头 × 128头维度 × 2048序列长度 × 2字节 = 1.07 GB

  • • 总需求:16 + 1.07 ≈ 17.07 GB(远超RTX 3060的12GB上限)

Ollama的“瘦身魔法

--4-bit GGUF量化:权重显存降至8B × 0.5字节 = 4 GB

--动态卸载策略:将部分权重临时转存至CPU内存,显存占用降至6.2 GB(实测数据)

--代价:CPU-GPU数据传输使Token生成速度从45 tokens/s降至28 tokens/s。

 vLLM的“显存洁癖"

  •  设计原则:vllm追求极致吞吐量,拒绝任何可能影响性能的动态卸载

  • 显存硬门槛:要求权重+KV Cache完全驻留GPU,导致DeepSeek-R1-8B在12GB显卡上无法启动

Ollama越级部署的三大核心技术 

混合精度量化(灵活度碾压vLLM)

 --层级敏感量化:对底层MLP层使用4-bit,顶层Attention保留6-bit(减少精度损失)

实测对比(DeepSeek-R1-8B生成任务):

量化方案

显存占用

PPL(困惑度)

Ollama混合精度

6.2 GB

7.1

vLLM官方INT8量化

10.5 GB

6.9

内存-CPU分级存储(vLLM的禁区)
  • 策略:将FP16的Attention权重保留在显存,MLP权重动态加载至内存

  • 技术代价

    • 每次前向传播增加5-8ms的PCIe传输延迟

    • 但显存需求直降40%(从10.5GB→6.2GB)

自适应序列切片

显存优化效果:2048 tokens输入时,峰值显存降低32%

长文本处理:当输入超过512 tokens时,自动拆分为多段并行处理

开发者选型指南

选Ollama的场景

  • • 个人开发者/小团队:硬件有限(≤24GB显存)

  • • 需要快速验证模型效果,对延迟容忍度高

  • • 长文本生成需求(利用切片策略降低峰值显存)

选vLLM的场景

  • • 企业级API服务:需要支持高并发(≥100 QPS)

  • • 拥有A100/H800等专业显卡,追求极致吞吐量

  • • 需兼容现有Kubernetes集群调度系统

终极避坑建议

  • • 警惕“虚假越级”:部分工具声称支持低显存运行,实则大幅裁剪模型参数(如DeepSeek-8B被阉割成6B)

  • • 验证量化完整性:使用llm-int8工具检查Attention层是否真的保留高精度

  • • 压测保平安:对Ollama需测试长时生成的显存泄漏问题(部分版本存在累积占用bug)

关键结论

Ollama的生存逻辑:通过量化+动态卸载,将显存需求压缩至硬件的60%以下

 vLLM的哲学缺陷:为追求工业级性能,放弃对资源受限场景的适配、

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值