题目:
题意:
给出ai,bi,选择至少n-k个,使100∗∑ai∑bi100∗∑ai∑bi最大
题解:
01分数规划第一题了
这东西我们可以设L=∑ai∑biL=∑ai∑bi,然后设di=∑ai−L∗∑bidi=∑ai−L∗∑bi,我们贪心的选择前n-k大,如果∑di>0∑di>0,证明有比L更大的解存在,那L怎么办呢?二分啊
01分数规划一般有三个主要的题型:
序列上:我们直接贪心选取a[i]−L∗b[i]a[i]−L∗b[i]的元素
树上:把边权变为a[i]−L∗b[i]a[i]−L∗b[i],求最大(最小)生成树
图上:把边权变为a[i]−L∗b[i]a[i]−L∗b[i],spfa判断负环(或正环)
代码:
#include <cstdio>
#include <algorithm>
using namespace std;
const double eps=1e-4;
const int N=1005;
double d[N];int a[N],b[N],n,k;
bool check(double mid)
{
for (int i=1;i<=n;i++) d[i]=a[i]-mid*b[i];
sort(d+1,d+n+1);double ans=0;
for (int i=n;i>k;i--) ans+=d[i];
return ans>0;
}
int main()
{
while (scanf("%d%d",&n,&k) && n)
{
for (int i=1;i<=n;i++) scanf("%d",&a[i]);
for (int i=1;i<=n;i++) scanf("%d",&b[i]);
double l=0,r=1;
while (r-l>=eps)
{
double mid=(l+r)/2;
if (check(mid)) l=mid;
else r=mid;
}
printf("%.0lf\n",100.0*l);
}
}