poj 2976: Dropping tests(01分数规划--Dinkelbach算法)

Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 13323 Accepted: 4675

Description

In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be

.

Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.

Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .

Input

The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.

Output

For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.

Sample Input

3 1
5 0 2
5 1 6
4 2
1 2 7 9
5 6 7 9
0 0

Sample Output

83
100


题意:

给你n组数,每组数中有两个数a[i]和b[i],让你在这n组数中选出n-k组使得100*∑a[i]/∑b[i]值最大

经典01分数规划问题:

http://blog.csdn.net/jaihk662/article/details/77505318

还是这个公式,x[i]表示选还是不选


先给出二分思路:

二分cnt,然后求出所有的d[i],按d[i]从大到小排序选择前n-k个并求和,如果大于0说明可能不是最优解

再说Dinkelbach算法:

先随机一个cnt,然后求出所有的d[i],按d[i]从大到小排序选择前n-k个求出∑a[i]/∑b[i],如果∑a[i]/∑b[i]==cnt,那么说明是最优解,否则令cnt=∑a[i]/∑b[i]继续,直到求出最优解(一般优于二分)


其实这题还有一个贪心思路:算出所有的d[i] = a[i]/b[i],也就是比率,然后按这个从大到小排序,选最大的k个

但这是错的,一个很简单的反例:

3 1

100 1 100

100 5 200

正确答案应该是(101/105)*100 ≈ 96

#include<stdio.h>
#include<algorithm>
#include<math.h>
using namespace std;
typedef struct Res
{
	double a, b;
	double d;
	bool operator < (const Res &b) const
	{
		if(d>b.d)
			return 1;
		return 0;
	}
}Res;
Res s[1005];
int main(void)
{
	int i, n, k;
	double cnt, sa, sb;
	while(scanf("%d%d", &n, &k), n!=0 || k!=0)
	{
		k = n-k;
		for(i=1;i<=n;i++)
			scanf("%lf", &s[i].a);
		for(i=1;i<=n;i++)
			scanf("%lf", &s[i].b);
		cnt = 0;
		while(1)
		{
			for(i=1;i<=n;i++)
				s[i].d = s[i].a-cnt*s[i].b;
			sort(s+1, s+n+1);
			sa = sb = 0;
			for(i=1;i<=k;i++)
			{
				sa += s[i].a;
				sb += s[i].b;
			}
			if(fabs(sa/sb-cnt)<0.00001)
				break;
			cnt = sa/sb;
		}
		printf("%.0f\n", cnt*100);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值