【BFS】迷宫寻路(带条件的 BFS)

本文介绍了一种基于广度优先搜索(BFS)的算法,用于解决探险家在含有门和钥匙的复杂迷宫中寻找最短逃生路径的问题。通过使用二维矩阵表示迷宫,以及一个三维数组跟踪已访问状态,该算法能够有效地处理多达10扇门的迷宫挑战。
摘要由CSDN通过智能技术生成

假设一个探险家被困在了地底的迷宫之中,要从当前位置开始找到一条通往迷宫出口的路径。
迷宫用一个二维矩阵组成,有的是墙,有的是路;有的路上有门,每扇门都在迷宫的某个地方有与之匹配的钥匙,只有先拿到钥匙才能打开门
请设计一个算法,帮助探险家找到脱困的最短路径。
如前所述,迷宫是通过一个二维矩阵表示的, 每个元素的值的含义如下 0 - 墙,1 - 路,2 - 探险家起始位置,3 - 迷宫的出口,大写字母 - 门,小写字母 - 对应大写字母所代表的门的钥匙。
输入描述:
迷宫的地图,用二维矩阵表示。
第一行是表示矩阵的行数和列数 M 和 N,后面的 M 行是矩阵的数据,每一行对应与矩阵的一行(中间没有空格)。M 和 N 都不超过 100, 门不超过 10 扇。
输出描述:
路径的长度,是一个整数

样例输入:
5 5
02111
01a0A
01003
01001
01111
样例输出:
7

  这是一个最短路径的题目,我是用 BFS 做的,也就是变成有条件的 BFS,用一个210 大小数组存一下手上钥匙的情况。印象里,是AC了,但是确实记不清了= =。

#include <iostream>
#include <vector>
#include <queue>
using namespace std;

bool visited[101][101][1025]; // 最大 100 * 100,最多 10 扇门,局部变量开不了这么大的数组

struct Node {
	Node(const int& _x, const int& _y, const int& _key, const int& _steps) 
		: x(_x), y(_y), key(_key), steps(_steps) {};
	int x, y, key, steps;
};

int main()
{
	const int dx[]{ 0, 1, 0, -1 }, dy[]{ 1, 0, -1, 0 };	// 上、右、下、左
	int m, n, start_x = -1, start_y = -1, des_x = -1, des_y = -1;
	vector<bool> found_key(26, false);
	cin >> m >> n;
	getchar();		// 读掉换行符
	vector<vector<char>> mmp(m, vector<char>(n, '0'));
	for (int i = 0; i < m; ++i) {
		for (int j = 0; j < n; ++j) {
			cin >> mmp[i][j];
			visited[i][j][0] = false;
			if (mmp[i][j] == '2') {			// 起点
				start_x = i; start_y = j;
			}
			else if (mmp[i][j] == '3') {	// 终点
				des_x = i; des_y = j;
			}
		}
		getchar();	// 读掉换行符
	}

	queue<Node> q;
	q.emplace(start_x, start_y, 0, 0);
	while (!q.empty()) {
		const Node tmp = q.front();
		q.pop();
		if (mmp[tmp.x][tmp.y] == '3') {
			printf("%d\n", tmp.steps);
			return 0;
		}
		for (int dir = 0; dir < 4; ++dir) {
			// 所有情况:出界、墙 - '0', 门 - 大写字母, 钥匙 - 小写字母, 路 - '1'、起始位置 - '2', 终点 - '3'
			const int new_x = tmp.x + dx[dir], new_y = tmp.y + dy[dir];
			int tmp_key = tmp.key;
			if (new_x < 0 || new_x >= m || new_y < 0 || new_y >= n || mmp[new_x][new_y] == '0'
				|| (mmp[new_x][new_y] >= 'A' && mmp[new_x][new_y] <= 'Z'
					&& (tmp_key & (1 << (mmp[new_x][new_y] - 'A'))) == 0))
				continue;
			// 当前位置是钥匙
			if (mmp[new_x][new_y] >= 'a' && mmp[new_x][new_y] <= 'z')
				tmp_key = tmp_key | (1 << (mmp[new_x][new_y] - 'a'));
			// 如果不是门,或者能开开门,且没有 visited 过
			if (!visited[new_x][new_y][tmp_key]) {
				visited[new_x][new_y][tmp_key] = true;
				q.emplace(new_x, new_y, tmp_key, tmp.steps + 1);
			}
		}
	}
	return -1;
}
### 回答1: 你好,我是C知道语言模型。关于你的问题,BFS是一种常见的图遍历算法,可以用于解决迷宫问题。下面是用C语言实现BFS迷宫问题的示例代码: ``` #include <stdio.h> #include <stdlib.h> #define MAX_QUEUE_SIZE 100 typedef struct { int row; int col; } Point; typedef struct { Point data[MAX_QUEUE_SIZE]; int front; int rear; } Queue; void enqueue(Queue *q, Point p) { if (q->rear == MAX_QUEUE_SIZE - 1) { fprintf(stderr, "Queue overflow!\n"); exit(EXIT_FAILURE); } q->data[++q->rear] = p; } Point dequeue(Queue *q) { if (q->front == q->rear) { fprintf(stderr, "Queue underflow!\n"); exit(EXIT_FAILURE); } return q->data[++q->front]; } int bfs(int maze[][6], int start_row, int start_col, int end_row, int end_col) { int visited[6][6] = {0}; // 初始化所有位置都未被访问过 Queue q = {{0}, -1, -1}; // 初始化队列 Point start = {start_row, start_col}; visited[start_row][start_col] = 1; // 标记起点为已访问 enqueue(&q, start); // 将起点加入队列 while (q.front != q.rear) { Point cur = dequeue(&q); // 取出队头元素 if (cur.row == end_row && cur.col == end_col) { return 1; // 到终点,返回1 } // 尝试向四个方向扩展 int dx[4] = {1, 0, -1, 0}; int dy[4] = {0, 1, 0, -1}; for (int i = 0; i < 4; i++) { int next_row = cur.row + dx[i]; int next_col = cur.col + dy[i]; // 如果位置合法且未被访问过,将其加入队列 if (next_row >= 0 && next_row < 6 && next_col >= 0 && next_col < 6 && maze[next_row][next_col] == 0 && !visited[next_row][next_col]) { Point next = {next_row, next_col}; visited[next_row][next_col] = 1; enqueue(&q, next); } } } return 0; // 队列为空但未到终点,返回0 } int main() { int maze[6][6] = { {0, 1, 0, 0, 0, 0}, {0, 1, 0, 1, 1, 0}, {0, 0, 0, 1, 0, 0}, {1, 1, 1, 0, 0, 1}, {0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0}, }; ### 回答2: 要用C语言来学习实现BFS迷宫问题,首先需要了解BFS(广度优先搜索)算法的原理和思路。BFS算法是一种基于图的搜索算法,可以用于解决迷宫问题。 首先,我们需要创建一个迷宫,可以使用一个二维数组来表示,其中0表示可通行的路径,1表示障碍物或墙壁。我们可以使用C语言的数组来表示迷宫。 接下来,我们需要定义一个队列来存储待搜索的节点。可以使用C语言的数组来模拟队列,可以通过维护队列的头部和尾部指针来实现队列的功能。 接下来,我们要利用BFS算法来搜索迷宫中的路径。BFS算法的基本思路是从起点开始,将起点添加到队列中,并标记起点的访问状态,然后不断地从队列中取出一个节点进行扩展,将可以到达的未访问节点加入队列,并标记为已访问。直到所有节点都被遍历完毕,或者到终点为止。 在实现BFS算法的过程中,我们可以使用一个二维数组来记录每个节点的访问状态,其中0表示未访问,1表示已访问。 最后,我们可以通过输出路径或使用其他方式展示迷宫中的路径,例如,可以在访问过程中记录每个节点的前驱节点,并回溯路径来展示最短路径。 以上是用C语言学习实现BFS迷宫问题的大致思路和步骤。通过实际编写代码,加深对BFS算法的理解和掌握,提升自己的编程能力。 ### 回答3: BFS(广度优先搜索)算法可以用来解决迷宫问题。迷宫问题是指在一个网格图中寻从起点到终点的路径,这些路径要经过一些阻碍物(墙壁)。 使用C语言编写BFS迷宫问题的解决方案可以按照以下步骤进行: 1. 首先创建一个二维数组作为迷宫的模拟。可以将迷宫中的墙壁表示为特定的值(例如0),可以通行的路径表示为另一个特定的值(例如1),起点和终点可以用不同的数值表示。 2. 创建一个队列来存储待访问的节点。首先将起点入队。 3. 创建一个visited数组来记录已经访问过的节点,初始时所有节点都未被访问。 4. 开始BFS循环,直到队列为空: - 从队列中取出一个节点作为当前节点。 - 如果当前节点是终点,那么说明已经到了从起点到终点的路径,结束搜索。 - 否则,将当前节点的所有相邻节点中未访问过的节点加入队列,并更新visited数组。 5. 如果BFS循环结束时,队列为空但仍未到终点,那么说明不存在从起点到终点的路径。 6. 可以根据visited数组的记录,回溯求得从起点到终点的路径。 使用BFS算法解决迷宫问题可以确保到最短路径,因为搜索的方式是逐层扩展,即先访问起点周围的节点,再访问与起点相邻的节点,依此类推,直到到终点或者遍历完所有可访问的节点。 这是一种常用的应用在寻路问题上的算法,对于较小规模的迷宫问题,用C语言实现BFS可以很高效地到从起点到终点的最短路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值