假设一个探险家被困在了地底的迷宫之中,要从当前位置开始找到一条通往迷宫出口的路径。
迷宫用一个二维矩阵组成,有的是墙,有的是路;有的路上有门,每扇门都在迷宫的某个地方有与之匹配的钥匙,只有先拿到钥匙才能打开门。
请设计一个算法,帮助探险家找到脱困的最短路径。
如前所述,迷宫是通过一个二维矩阵表示的, 每个元素的值的含义如下 0 - 墙,1 - 路,2 - 探险家起始位置,3 - 迷宫的出口,大写字母 - 门,小写字母 - 对应大写字母所代表的门的钥匙。
输入描述:
迷宫的地图,用二维矩阵表示。
第一行是表示矩阵的行数和列数 M 和 N,后面的 M 行是矩阵的数据,每一行对应与矩阵的一行(中间没有空格)。M 和 N 都不超过 100, 门不超过 10 扇。
输出描述:
路径的长度,是一个整数
样例输入:
5 5
02111
01a0A
01003
01001
01111
样例输出:
7
这是一个最短路径的题目,我是用 BFS 做的,也就是变成有条件的 BFS,用一个210 大小数组存一下手上钥匙的情况。印象里,是AC了,但是确实记不清了= =。
#include <iostream>
#include <vector>
#include <queue>
using namespace std;
bool visited[101][101][1025]; // 最大 100 * 100,最多 10 扇门,局部变量开不了这么大的数组
struct Node {
Node(const int& _x, const int& _y, const int& _key, const int& _steps)
: x(_x), y(_y), key(_key), steps(_steps) {};
int x, y, key, steps;
};
int main()
{
const int dx[]{ 0, 1, 0, -1 }, dy[]{ 1, 0, -1, 0 }; // 上、右、下、左
int m, n, start_x = -1, start_y = -1, des_x = -1, des_y = -1;
vector<bool> found_key(26, false);
cin >> m >> n;
getchar(); // 读掉换行符
vector<vector<char>> mmp(m, vector<char>(n, '0'));
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
cin >> mmp[i][j];
visited[i][j][0] = false;
if (mmp[i][j] == '2') { // 起点
start_x = i; start_y = j;
}
else if (mmp[i][j] == '3') { // 终点
des_x = i; des_y = j;
}
}
getchar(); // 读掉换行符
}
queue<Node> q;
q.emplace(start_x, start_y, 0, 0);
while (!q.empty()) {
const Node tmp = q.front();
q.pop();
if (mmp[tmp.x][tmp.y] == '3') {
printf("%d\n", tmp.steps);
return 0;
}
for (int dir = 0; dir < 4; ++dir) {
// 所有情况:出界、墙 - '0', 门 - 大写字母, 钥匙 - 小写字母, 路 - '1'、起始位置 - '2', 终点 - '3'
const int new_x = tmp.x + dx[dir], new_y = tmp.y + dy[dir];
int tmp_key = tmp.key;
if (new_x < 0 || new_x >= m || new_y < 0 || new_y >= n || mmp[new_x][new_y] == '0'
|| (mmp[new_x][new_y] >= 'A' && mmp[new_x][new_y] <= 'Z'
&& (tmp_key & (1 << (mmp[new_x][new_y] - 'A'))) == 0))
continue;
// 当前位置是钥匙
if (mmp[new_x][new_y] >= 'a' && mmp[new_x][new_y] <= 'z')
tmp_key = tmp_key | (1 << (mmp[new_x][new_y] - 'a'));
// 如果不是门,或者能开开门,且没有 visited 过
if (!visited[new_x][new_y][tmp_key]) {
visited[new_x][new_y][tmp_key] = true;
q.emplace(new_x, new_y, tmp_key, tmp.steps + 1);
}
}
}
return -1;
}